【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當(dāng)x不超過4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
【答案】
(1)解:由題意得當(dāng)0<x≤4時(shí),v=2;
當(dāng)4<x≤20時(shí),設(shè)v=ax+b,
由已知得: ,解得: ,
所以v=﹣ x+ ,
故函數(shù)v=
(2)解:設(shè)年生長量為f(x)千克/立方米,
依題意并由(1)可得f(x)=
當(dāng)0<x≤4時(shí),f(x)為增函數(shù),故f(x)max=f(4)=4×2=8;
當(dāng)4<x≤20時(shí),f(x)=﹣ x2+ x=﹣ (x2﹣20x)=﹣ (x﹣10)2+ ,
f(x)max=f(10)=12.5.
所以當(dāng)0<x≤20時(shí),f(x)的最大值為12.5.
即當(dāng)養(yǎng)殖密度為10尾/立方米時(shí),魚的年生長量可以達(dá)到最大,最大值為12.5千克/立方米
【解析】(1)當(dāng)4<x≤20時(shí),設(shè)v=ax+b,根據(jù)待定系數(shù)法求出a,b的值,從而求出函數(shù)的解析式即可;(2)根據(jù)f(x)的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求出f(x)的最大值即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=4n,數(shù)列{bn}滿足b1=-3,
bn+1=bn+(2n-3)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)若cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.(不需要嚴(yán)格證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e1+|x|﹣ ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.
B.
C.(﹣ , )
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列和中,已知,且, ,若數(shù)列為等比數(shù)列.
(Ⅰ)求及數(shù)列的通項(xiàng)公式;
(Ⅱ)令,是否存在正整數(shù), (),使, , 成等差數(shù)列?若存在,求出, 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點(diǎn),求的中點(diǎn)到直線: 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)y= (m∈Z)的圖象與x軸,y軸沒有交點(diǎn),且關(guān)于y軸對稱,則m=( )
A.1
B.0,2
C.﹣1,1,3
D.0,1,2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com