【題目】為做好2022年北京冬季奧運會的宣傳工作,組委會計劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學(xué)生

610

女大學(xué)生

90

合計

800

(1)根據(jù)題意完成表格;

(2)是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?

【答案】(1)填表 如下圖;(2)沒有的把握認(rèn)為愿意做志愿者工作與性別有關(guān).

【解析】

(1)由題意,可完成列聯(lián)表。

(2)K2計算公式,可求得K2的值,進(jìn)而利用臨界值判斷是否有把握認(rèn)為有關(guān)系。

(1)補全聯(lián)立表得(每空一分):

愿意做志愿者工作

不愿意做志愿者工作

合計

男大學(xué)生

500

110

610

女大學(xué)生

300

90

390

合計

800

200

1000

(2)因為的觀測值 ,

∴沒有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)、兩種元件,其質(zhì)量按測試指標(biāo)劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各件進(jìn)行檢測,檢測結(jié)果記錄如下:







B






由于表格被污損,數(shù)據(jù)、看不清,統(tǒng)計員只記得,且、兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.

1)求表格中的值;

2)從被檢測的種元件中任取件,求件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費相應(yīng)增加.現(xiàn)對一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前五年平均每臺設(shè)備每年的維護(hù)費用大致如下表:

年份(年)

1

2

3

4

5

維護(hù)費(萬元)

1.1

1.5

1.8

2.2

2.4

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)若該設(shè)備的價格是每臺5萬元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰更有道理?并說明理由.

(參考公式: .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cosx,t)(t∈R), =(sinx﹣cosx,1),函數(shù)y=f(x)= ,將y=f(x)的圖象向左平移 個單位長度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0, ]內(nèi)的最大值為
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若 g( )=﹣1,a=2,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)某班同學(xué)利用國慶節(jié)進(jìn)行社會實踐,對歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(1)補全頻率分布直方圖并求、的值;

(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗活動,其中選取人作為領(lǐng)隊,記選取的名領(lǐng)隊中年齡在歲的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時,函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時,函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時,的最小值為

當(dāng)時,的最小值為

當(dāng)時,的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點為拋物線上一點.

1)求的方程;

2)若點上,過的兩弦,若,求證: 直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個直角三角形的三個頂點分別在底面棱長為2的正三棱柱的側(cè)棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設(shè)處, ,
則有
該直角三角形斜邊

故答案為.

型】填空
結(jié)束】
16

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)證明:
(2)證明:當(dāng)a≥1時,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)的圖象上關(guān)于y軸對稱的點至少有5對,則實數(shù)a的取值范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

同步練習(xí)冊答案