(本題滿分16分)A、B是函數(shù)f(x)=+的圖象上的任意兩點(diǎn),且=(),已知點(diǎn)M的橫坐標(biāo)為.
(Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn;
(Ⅲ)已知數(shù)列{an}的通項公式為. Tn為其前n項的和,若Tn<(Sn+1+1),對一切正整數(shù)都成立,求實(shí)數(shù)的取值范圍.
(Ⅰ)證明:設(shè)A(x1,y1),B(x2,y2),M(,ym),由得
即x1+x2="1."
即M點(diǎn)的縱坐標(biāo)為. …………………………………………………4分
(Ⅱ)當(dāng)n≥2時,∈(0,1),又=…=x1+x2,
∴=…=f(x1)+f(x2)=y1+y2=1.
…,又…,
∴2Sn=n-1,則(n≥2,n∈N+). ……………………………10分
(Ⅲ)由已知T1=a1=,n≥2時,,
∴Tn=a1+a2+…+an=…=.
當(dāng)n∈N+時,Tn<(Sn+1+1),即>,n∈N+恒成立,則>.
而(n=2時“=”成立),
∴,∴實(shí)數(shù)的取值范圍為(,+∞). ……………………16分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分,第(1)小題6分,第(2)小題10分)
某團(tuán)體計劃于2011年年初劃撥一筆款項用于設(shè)立一項基金,這筆基金由投資公司運(yùn)作,每年可有3%的受益.
(1)該筆資金中的A(萬元)要作為保障資金,每年年末將本金A及A的當(dāng)年受益一并作為來年的投資繼續(xù)運(yùn)作,直到2020年年末達(dá)到250(萬元),求A的值;
(2)該筆資金中的B(萬元)作為獎勵資金,每年年末要從本金B(yǎng)及B的當(dāng)年受益中支取250(萬元),余額來年繼續(xù)運(yùn)作,并計劃在2020年年末支取后該部分資金余額為0,求B的值.(A和B的結(jié)果以萬元為單位,精確到萬元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分16分)A、B是函數(shù)f(x)=+的圖象上的任意兩點(diǎn),且=(),已知點(diǎn)M的橫坐標(biāo)為.
(Ⅰ)求證:M點(diǎn)的縱坐標(biāo)為定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn;
(Ⅲ)已知數(shù)列{an}的通項公式為. Tn為其前n項的和,若Tn<(Sn+1+1),對一切正整數(shù)都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高級中高三第二次月考試卷數(shù)學(xué) 題型:解答題
(本題滿分16分)本題共有3個小題,第1小題滿分5分,第2小題滿分6分,第3小題滿分5分.
已知函數(shù)是奇函數(shù),定義域?yàn)閰^(qū)間D(使表達(dá)式有意義的實(shí)數(shù)x 的集合).
(1)求實(shí)數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù),試判斷函數(shù)在定義域D內(nèi)的單調(diào)性,并證明;
(3)當(dāng)(,a是底數(shù))時,函數(shù)值組成的集合為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年安徽省淮安五校高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)已知ABCD四點(diǎn)的坐標(biāo)分別為 A(1,0), B(4,3),
C(2,4),D(0,2)
⑴證明四邊形ABCD是梯形;
⑵求COS∠DAB。
⑶設(shè)實(shí)數(shù)t滿足(-t)·=0,求t的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com