【題目】執(zhí)行如圖所示的程序框圖,則下列說法正確的( )
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5
【答案】D
【解析】解:模擬執(zhí)行程序,可得
S=0,i=1
執(zhí)行循環(huán)體,S=1,i=2
不滿足條件S>ai,執(zhí)行循環(huán)體,S=4,i=3
不滿足條件S>ai,執(zhí)行循環(huán)體,S=9,i=4
不滿足條件S>ai,執(zhí)行循環(huán)體,S=16,i=5
由題意,此時滿足條件S>ai,退出循環(huán),輸出i的值為5,
則16>5a,且9≤4a,解得: ≤a< .
故選:D.
模擬執(zhí)行程序,依次寫出每次循環(huán)得到的S,i的值,由題意可得16>5a,且9≤4a,從而解得a的范圍,依次判斷選項即可得解.
科目:高中數學 來源: 題型:
【題目】已知函數== .
(1)求函數的單調遞增區(qū)間;(只需寫出結論即可)
(2)設函數= ,若在區(qū)間上有兩個不同的零點,求實數的取值范圍;
(3)若存在實數,使得對于任意的,都有成立,求實數的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面MDF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知在正四棱錐中, 為側棱的中點, 連接相交于點。
(1)證明: ;
(2)證明: ;
(3)設,若質點從點沿平面與平面的表 面運動到點的最短路徑恰好經過點,求正四棱錐 的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查喜歡旅游是否與性別有關,調查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調研了50名女性和50名男性,根據調研結果得到如圖所示的等高條形圖
(1)完成下列2×2列聯表:
喜歡旅游 | 不喜歡旅游 | 合計 | |
女性 | |||
男性 | |||
合計 |
(2)能否在犯錯率不超過0.025的前提下認為“喜歡旅游與性別有關” 附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點,一個焦點F(﹣2,0),且長軸長與短軸長的比是 .
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當 最小時,點P恰好落在橢圓的右頂點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為
(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;
(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com