直線l:(m+1)x+2y-2m-2=0(m∈R)恒過定點C,以C為圓疏,2為半徑作圓C,
(1)求圓C方程;
(2)設(shè)點C關(guān)于y軸的對稱點為C1,動點M在曲線E上,在△MCC'中,滿足∠C1MC=2θ,△MCC'的面積為4tanθ,求曲線E的方程;
(3)點P在(2)中的曲線E上,過點P做圓C的兩條切線,切點為Q、R,求數(shù)學(xué)公式的最小值.

解:(1)設(shè)C(x,y),則(m+1)x+2y-2m-2=m(x-2)+x+2y-2=0(m∈R)
恒成立所以x=2,y=0,
即C(2,0)…(2分)
所以圓C的方程為(x-2)2+y2=4…(3分)
(2)由題可知C'(-2,0),
|CC'|=4,∠C'MC=2θ
在△MCC'中,設(shè)|MC'|=m,|MC|=n
所以,由余弦定理可知m2+n2-2mncos2θ=16①…(4分)
又因為,
所以②…(5分)
由①②得
整理得…(6分)
故點M在以C,C'為焦點的橢圓上
所以E的方程為…(8分)
注:不寫明(y=0)扣(1分)
(3)設(shè)…(10分)
=
當(dāng)且僅當(dāng)時等號成立,

所以得最小值為…(12分)
分析:(1)設(shè)C(x,y),則(m+1)x+2y-2m-2=m(x-2)+x+2y-2=0(m∈R)恒成立,所以C(2,0).由此能求出圓C的方程.
(2)由題可知C'(-2,0),|CC'|=4,∠C'MC=2θ.在△MCC'中,設(shè)|MC'|=m,|MC|=n,由余弦定理可知m2+n2-2mncos2θ=16.因為,所以.由此能求出E的方程.
(3)設(shè)=.由此能求出的最小值.
點評:本題考查圓的方程和曲線方程的求法,求的最小值.解題時要認真審題,注意挖掘題設(shè)中的隱含條件,利用圓錐曲線的性質(zhì),合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2-2x-4y-13=0與圓C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直線l:(m+1)x+y-7m-7=0與圓C2相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y+2)2=9,直線l:(m+1)x-y-2m-3=0(m∈R)
(1)求證:無論m取什么實數(shù),直線恒與圓交于兩點;
(2)求直線l被圓C所截得的弦長最小時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取何實數(shù),直線l:(m-1)x+(2m-1)y=m-5恒過定點
(9,-4)
(9,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:(m+1)x+2y-2m-2=0(m∈R)恒過定點C,以C為圓疏,2為半徑作圓C,
(1)求圓C方程;
(2)設(shè)點C關(guān)于y軸的對稱點為C1,動點M在曲線E上,在△MCC'中,滿足∠C1MC=2θ,△MCC'的面積為4tanθ,求曲線E的方程;
(3)點P在(2)中的曲線E上,過點P做圓C的兩條切線,切點為Q、R,求
PQ•
PR
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取任何實數(shù),直線l:(m-1)x-y+2m+1=0恒過一定點,則該定點的坐標是( 。

查看答案和解析>>

同步練習(xí)冊答案