【題目】已知拋物線,焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為__________

【答案】

【解析】分析:設(shè)A(x1,y1),B(x2,y2).當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為y=k(x﹣),(k0).與拋物線方程聯(lián)立可得根與系數(shù)的關(guān)系,利用|AF|+4|BF|=x1++2(x2+)及其基本不等式的性質(zhì)即可得出,當(dāng)直線AB的斜率不存在時,直接求出即可.

詳解:F(,0),

設(shè)A(x1,y1),B(x2,y2).

當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為y=k(x﹣),(k0).

聯(lián)立 ,化為k2x2﹣(k2+2)x+k2=0.

x1x2=

∴|AF|+2|BF|=x1++2(x2+)=x1+2x2+2+=,當(dāng)且僅當(dāng)x1=2x2=時取等號.

當(dāng)直線AB的斜率不存在時,|AF|+2|BF|=3p=3.

綜上可得:|AF|+2|BF|的最小值為:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)AB.

1)求橢圓C的方程;

2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體ABCDA1B1C1D1中,A1AABE、F分別是BD1AD中點(diǎn),求異面直線CD1,EF所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),a為常數(shù).

1)求a的值;

2)判斷函數(shù)時單調(diào)性并證明;

3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面ABC,,,,,點(diǎn)EF分別為BC的中點(diǎn).

1)求證:平面;

2)求證:直線平面;

3)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計(jì)觀看冬奧會的時間情況.收集了200位男生、100位女生累計(jì)觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機(jī)抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.

(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;

(3)以(1)中的頻率估計(jì)100位女生中累計(jì)觀看時間小于20個小時的人數(shù).已知200位男生中累計(jì)觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會累計(jì)時間與性別有關(guān)”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),上的奇函數(shù),且.

1)求的解析式;

2)若函數(shù)上只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求的值,并求的定義域;

2)判斷函數(shù)的單調(diào)性,不需要證明;

3)若對于任意,是否存在實(shí)數(shù),使得不等式恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案