【題目】已知定義在上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為,當(dāng)時,恒有,令,則滿足的實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】定義在R上的奇函數(shù)f(x),
所以:f(﹣x)=﹣f(x)
設(shè)f(x)的導(dǎo)函數(shù)為f′(x),
當(dāng)x∈(﹣∞,0]時,恒有xf′(x)<f(﹣x),
則:xf′(x)+f(x)<0
即:[xf(x)]′<0
所以:函數(shù)F(x)=xf(x)在(﹣∞,0)上是單調(diào)遞減函數(shù).
由于f(x)為奇函數(shù),
令F(x)=xf(x),
則:F(x)為偶函數(shù).
所以函數(shù)F(x)=xf(x)在(0,+∞)上是單調(diào)遞增函數(shù).
則:滿足F(2)>F(x﹣1)滿足的條件是:|x﹣1|<2,
解得:﹣1<x<3.
所以x的范圍是:(﹣1,3)
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式(x﹣1)f(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,)( )
A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(Ⅰ)若f(x)=,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若對任意m,n∈[﹣1,1],m+n≠0,都有 .
(1)用定義證明函數(shù)f(x)在定義域上是增函數(shù);
(2)若 ,求實數(shù)a的取值范圍;
(3)若不等式f(x)≤(1﹣2a)t+2對所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點的直線的直角坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)的定義域是[0,4],則函數(shù)g(x)= 的定義域是( )
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com