【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿(mǎn)足f′(x1)= ,f′(x2) ,則稱(chēng)函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.( , )
B.(0,1)
C.( ,1)
D.( ,1)
【答案】D
【解析】解:由題意可知,
在區(qū)間[0,a]存在x1 , x2(0<x1<x2<a),
滿(mǎn)足f′(x1)= = =a2﹣a,
∵f(x)=x3﹣x2+a,
∴f′(x)=3x2﹣2x,
∴方程3x2﹣2x=a2﹣a在區(qū)間(0,a)有兩個(gè)解.
令g(x)=3x2﹣2x﹣a2+a,(0<x<a),
∴
解得 <a<1,
故選:D.
由新定義可知f′(x1)=f′(x2)=a2﹣a,即方程3x2﹣2x=a2﹣a在區(qū)間(0,a)有兩個(gè)解,利用二次函數(shù)的性質(zhì)可知實(shí)數(shù)a的取值范圍
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程是ρ= .
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程與曲線(xiàn)C的普通方程;
(2)若點(diǎn) P是曲線(xiàn)C上的動(dòng)點(diǎn),求 P到直線(xiàn)l的距離的最小值,并求出 P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中, , ,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線(xiàn): (, )交橢圓于、兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①定義在R上的函數(shù)f(x)滿(mǎn)足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿(mǎn)足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個(gè)函數(shù)的解析式為y=x2 , 它的值域?yàn)閧0,1,4},這樣的不同函數(shù)共有9個(gè)
④設(shè)函數(shù)f(x)=lnx,則對(duì)于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號(hào)有(填上所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定個(gè)人稿費(fèi)納稅辦法是:不超過(guò)800元的不納稅;超過(guò)800元而不超過(guò)4 000元的按超過(guò)800元部分的14%納稅;超過(guò)4 000元的按全部稿酬的11%納稅.已知某人出版一本書(shū),共納稅420元,這個(gè)人應(yīng)得稿費(fèi)(扣稅前)為( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù) (m∈Z)的圖象關(guān)于y軸對(duì)稱(chēng),且在區(qū)間(0,+∞)為減函數(shù)
(1)求m的值和函數(shù)f(x)的解析式
(2)解關(guān)于x的不等式f(x+2)<f(1﹣2x).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com