【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且橢圓過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點(diǎn)分別為,過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ);(Ⅱ)(1);(2),.
【解析】
試題(Ⅰ)設(shè)橢圓方程,由題意列關(guān)于的方程組求解的值,則橢圓方程可求;(Ⅱ)設(shè),不妨設(shè),設(shè)的內(nèi)切圓的徑,則的周長(zhǎng)為,,因此最大,就最大.設(shè)直線的方程為,與橢圓方程聯(lián)立,從而可表示的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論.
試題解析:解:(Ⅰ)由題意可設(shè)橢圓方程為.則,解得:.∴橢圓方程為,
(Ⅱ)設(shè),不妨,設(shè)的內(nèi)切圓的半徑,
則的周長(zhǎng)為,因此最大,
就最大,
由題知,直線的斜率不為零,可設(shè)直線的方程為,
由得,得
則,
令,則,∴,
令,則,當(dāng)時(shí),,在上單調(diào)遞增,有,
即當(dāng)時(shí),,,∴,這時(shí)所求內(nèi)切圓面積的最大值為.
故直線內(nèi)切圓面積的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:與直線:,動(dòng)直線過定點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于、兩點(diǎn),點(diǎn)M是PQ的中點(diǎn),直線與直線相交于點(diǎn)N.探索是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求的值;
(2)若為區(qū)間上的任意實(shí)數(shù),且對(duì)任意,總有成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,且恒成立,求的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知拋物線,過點(diǎn)的直線與拋物線交于、兩點(diǎn),且直線與軸交于點(diǎn).(1)求證:,,成等比數(shù)列;
(2)設(shè),,試問是否為定值,若是,求出此定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)預(yù)計(jì)全年分批購入電視機(jī)3600臺(tái),其中每臺(tái)價(jià)值2000元,每批購入的臺(tái)數(shù)相同,且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購入的電視機(jī)全年所付保管費(fèi)與每批購入的電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比,比例系數(shù)為,若每批購入400臺(tái),則全年需要支付運(yùn)費(fèi)和保管費(fèi)共43600元.
(1)求的值;
(2)請(qǐng)問如何安排每批進(jìn)貨的數(shù)量,使支付運(yùn)費(fèi)與保管費(fèi)的和最少?并求出相應(yīng)最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com