【題目】執(zhí)行如圖所示的程序框圖,若輸出的S的值為64,則判斷框內(nèi)可填入的條件是(
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?

【答案】A
【解析】解:模擬執(zhí)行程序框圖,可得:

S=1,k=0

滿足條件,S=1,k=1,

滿足條件,S=2,k=2,

滿足條件,S=8,k=3,

滿足條件,S=64,k=4,

由題意,此時(shí)應(yīng)不滿足條件,退出循環(huán),輸出S的值為64.

結(jié)合選項(xiàng)可得判斷框內(nèi)填入的條件可以是:k≤3.

故選:A.

【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0;命題q:實(shí)數(shù)x滿足|x﹣3|≤1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 點(diǎn)P(x0 )為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點(diǎn)O的距離為 ,則雙曲線的離心率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)說法: ①繪制頻率分布直方圖時(shí),各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時(shí),相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=
④對(duì)分類變量X與Y,若它們的隨機(jī)變量K2的觀測(cè)值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是(
A.①④
B.②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足: ,anan+1<0(n≥1),數(shù)列{bn}滿足:bn=an+12﹣an2(n≥1). (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式
(Ⅱ)證明:數(shù)列{bn}中的任意三項(xiàng)不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對(duì)數(shù)的底數(shù));
(2)若對(duì)任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且點(diǎn)是該函數(shù)圖象的一個(gè)最高點(diǎn).

(1)求函數(shù)的解析式;

(2)若,求函數(shù)的值域;

(3)把函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)上是單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法: ①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程 ,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程 必經(jīng)過點(diǎn) ;
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDC,FPB的中點(diǎn).求證:

(1)DFAP.

(2)在線段AD上是否存在點(diǎn)G,使GF⊥平面PBC?若存在,說明G點(diǎn)的位置,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案