【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B. C. D.
【答案】B
【解析】由題意,該幾何體是一個組合體,下半部分是一個底面半徑為3,高為4的圓柱,其體積,上半部分是一個底面半徑為3,高為6的圓柱的一半,其體積,故該組合體的體積.故選B.
點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進(jìn)行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對稱軸間的距離為.
(1)當(dāng)時,求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)= ,g(x)=( )2
B.f(x)=(x﹣1)0 , g(x)=1
C.f(x) ,g(x)=x+1
D.f(x)= ,g(t)=|t|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機抽查了50人,并將調(diào)查情況進(jìn)行整理后制成下表:
(1)規(guī)定:年齡在內(nèi)的為青年人,年齡在內(nèi)的為中年人,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:
(2)能否在犯錯誤的概率不超過0.025的前提下,認(rèn)為贊成“車輛限行”與年齡有關(guān)?
參考公式和數(shù)據(jù): ,其中.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)= x·ex, , ,若對任意的,都有成立,則實數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到理科題的概率;
(2)該考生答對理科題的概率均為,若每題答對得10分,否則得零分,現(xiàn)該生抽到3道理科題,求其所得總分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com