(12分)如圖,在棱長為2的正方體ABCD -A1B1C1D1中,E、F分別為A1D1CC1 的中點(diǎn).

(1)求證:EF∥平面ACD1;
(2)求三棱錐E-ACD1的體積與正方體
ABCD -A1B1C1D1的體積之比.
解:(1)取的中點(diǎn),連接,.

,

 

 
 EF∥平面ACD1      6分
(2) 
      
    12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,斜三棱柱的底面是直角三角形,,點(diǎn)在底面上的射影恰好是的中點(diǎn),且
(Ⅰ)求證:平面平面
(Ⅱ)求證:
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

18.(本小題滿分14分)

如圖5,四邊形是圓柱的軸截面,點(diǎn)在圓柱的底面圓周上,的中點(diǎn),圓柱的底面圓的半徑,側(cè)面積為
(1)求證:
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在六面體ABC-DEFG中,平面∥平面⊥平面,,,.且,

(1)求證:∥平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在如圖所示的多面體中,底面△ABC是邊長為2的正三角形,DAEC均垂直于平面ABC,且DA = 2,EC = 1.
(Ⅰ)求點(diǎn)A到平面BDE的距離;
(Ⅱ)求二面角BEDA的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若球的大圓的面積擴(kuò)大為原來的3倍,則它的體積擴(kuò)大為原來的                (     )
A.3倍B.27倍C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、、是直線,是平面,給出下列命題:①若,,則;
②若,,則;③若,,則;④若,則;⑤若異面,則至多有一條直線與、都垂直.其中真命題是           .(把符合條件的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

6. 一個與球心距離為1的平面截球所得的圓面面積為4π,則球的表面積為
A. 5π     B.17π       C.20π      D.68π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體中,棱長為4,BC的中點(diǎn),在線段上運(yùn)動(不與重合),
過點(diǎn)作直線平面,與平面交于點(diǎn)Q,給出下列命題:
 ②Q點(diǎn)一定在直線DM上 ③ 
其中正確的是
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步練習(xí)冊答案