【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.

【答案】
(1)解:基本事件共6×6=36個:

(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).

朝上一面數(shù)相等的有6個,則朝上的一面數(shù)相等的概率P=


(2)解:由(1)知,朝上的一面數(shù)之和小于5有6個,

故朝上的一面數(shù)之和小于5的概率P=


【解析】(1)列舉出所有36個基本事件,由古典概型的概率計算公式可求;(2)由(1)可知朝上一面數(shù)之和小于5包含的基本事件數(shù),由古典概型概率計算公式可求;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸上分別修建觀光長廊AC,其中是寬長廊,造價是元/米, 是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么的長度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面,底面為菱形,交點,已知,

(I)求證:平面

(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.

(III)設(shè)點內(nèi)(含邊界),且求所有滿足條件的點構(gòu)成的圖形,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程2x2﹣( +1)x+m=0的兩根為sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)+ 的值;
(3)方程的兩根及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin2x(x∈R)圖象上所有的點向左平移 個單位長度,所得圖象的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓心為的圓上的動點,點 為坐標原點,線段的垂直平分線交于點.

(1)求動點的軌跡的方程;

(2)過原點作直線交(1)中的軌跡于點,點在軌跡上,且,點滿足,試求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為公差不為的等差數(shù)列, 為前項和, 的等差中項為,且.令數(shù)列的前項和為

1)求;

2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點, .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過且平行于的直線與直線交于點.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,其前項和為, 是等比數(shù)列,且, ,

(1)求數(shù)列的通項公式;

(2)求的值.

查看答案和解析>>

同步練習(xí)冊答案