【題目】已知曲線f(x)=ke﹣2x在點x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數(shù)g(x)=f(x)﹣|1nx|的兩個零點,則( )
A.1<x1x2<
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線x2=4y的焦點F和點A(-1,8),點P為拋物線上一點,則|PA|+|PF|的最小值為( )
A. 16 B. 6 C. 12 D. 9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當x∈[1,+∞)時,f(x)≥ 恒成立,求實數(shù)m的取值范圍;
(3)當n∈N* , n≥2時,求證:nf(n)<2+ + +…+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)判斷在定義域上的單調(diào)性并加以證明;
(Ⅲ)若對于任意的,不等式恒成立, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】半徑為2的球O內(nèi)有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當該正四棱柱的側(cè)面積最大時,球的表面積與該四棱柱的側(cè)面積之差是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和最小值;
(2)若函數(shù)在上的最小值為,求的值;
(3)若,且對任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為元.旅行團中的每個人的飛機票按以下方式與旅行社結算:若旅行團的人數(shù)不超過人時,飛機票每張收費元;若旅行團的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機票費減少元,但旅行團的人數(shù)最多不超過人.設旅行團的人數(shù)為人,飛機票價格元,旅行社的利潤為元.
(1)寫出飛機票價格元與旅行團人數(shù)之間的函數(shù)關系式;
(2)當旅行團人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com