【題目】三人獨立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為 ,且他們是否破譯出密碼互不影響. (Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個大?說明理由.

【答案】解:記“第i個人破譯出密碼”為事件A1(i=1,2,3),

依題意有

且A1,A2,A3相互獨立.

(Ⅰ)設(shè)“恰好二人破譯出密碼”為事件B,則有

B=A1A2 +A1 A3+ A2A3

且A1A2 ,A1 A3 A2A3彼此互斥

于是P(B)=P(A1A2 )+P(A1 A3)+P( A2A3

=

=

答:恰好二人破譯出密碼的概率為

(Ⅱ)設(shè)“密碼被破譯”為事件C,“密碼未被破譯”為事件D.

D= ,且 , , 互相獨立,則有

P(D)=P( )P( )P( )= =

而P(C)=1﹣P(D)= ,

故P(C)>P(D).

答:密碼被破譯的概率比密碼未被破譯的概率大.


【解析】根據(jù)題意,記“第i個人破譯出密碼”為事件A1(i=1,2,3),分析可得三個事件的概率且三個事件相互獨立;(Ⅰ)設(shè)“恰好二人破譯出密碼”為事件B,則B包括彼此互斥的A1A2 A1 A3+ A2A3,由互斥事件的概率公式與獨立事件的乘法公式計算可得答案;(Ⅱ)設(shè)“密碼被破譯”為事件C,“密碼未被破譯”為事件D,則D= ,由獨立事件的乘法公式計算可得D的概率,再由對立事件的概率公式可得C的概率,比較可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個說法: ①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=
④對分類變量X與Y,若它們的隨機變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是(
A.①④
B.②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法: ①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;
②設(shè)有一個回歸方程 ,變量x增加一個單位時,y平均增加3個單位;
③線性回歸方程 必經(jīng)過點 ;
④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a<0). (Ⅰ)當(dāng)a=﹣3時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象中心觀察和預(yù)測:發(fā)生于地的沙塵暴一直向正南方向移動,其移動速度與時間的函數(shù)圖像如圖所示,過線段上一點作橫軸的垂線梯形在直線左側(cè)部分的面積即為內(nèi)沙塵暴所經(jīng)過的路程.

(1)當(dāng)時,求的值;

(2)將變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;

(3)若城位于地正南方向,且距650,試判斷這場沙塵暴是否會侵襲到城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊3人)進(jìn)入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDC,FPB的中點.求證:

(1)DFAP.

(2)在線段AD上是否存在點G,使GF⊥平面PBC?若存在,說明G點的位置,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

運動

合計

男性

20

10

30

女性

45

5

50

合計

65

15

80


(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人是以運動為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為休閑方式與性別有關(guān)系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ),其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m∈R,函數(shù)f(x)=ex﹣m(x+1) m2(其中e為自然對數(shù)的底數(shù))
(Ⅰ)若m=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知實數(shù)x1 , x2滿足x1+x2=1,對任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范圍;
(Ⅲ)若函數(shù)f(x)有一個極小值點為x0 , 求證f(x0)>﹣3,(參考數(shù)據(jù)ln6≈1.79)

查看答案和解析>>

同步練習(xí)冊答案