【題目】如圖,在四面體中,.
(1)求證:平面平面;
(2)若,二面角為,求異面直線與所成角的余弦值.
【答案】(1)證明見解析
(2)
【解析】
(1)取中點(diǎn)連接,得,可得,
可證,可得,進(jìn)而平面,即可證明結(jié)論;
(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.
(1)證明:取中點(diǎn)連接,
由則
,則,
故,,
平面,又平面,
故平面平面
(2)解法一:設(shè)分別為邊的中點(diǎn),
則,
(或補(bǔ)角)是異面直線與所成的角.
設(shè)為邊的中點(diǎn),則,
由知.
又由(1)有平面,
平面,
所以為二面角的平面角,,
設(shè)則
在中,
從而
在中,,
又,
從而在中,因,
,
因此,異面直線與所成角的余弦值為.
解法二:過點(diǎn)作交于點(diǎn)
由(1)易知兩兩垂直,
以為原點(diǎn),射線分別為軸,
軸,軸的正半軸,建立空間直角坐標(biāo)系.
不妨設(shè),由,
易知點(diǎn)的坐標(biāo)分別為
則
顯然向量是平面的法向量
已知二面角為,
設(shè),則
設(shè)平面的法向量為,
則
令,則
由
由上式整理得,
解之得(舍)或
,
因此,異面直線與所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的每個(gè)頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)確定的位置(需要說明理由),并證明:平面平面.
(2)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園劃船收費(fèi)標(biāo)準(zhǔn)如表:
某班16名同學(xué)一起去該公園劃船,若每人劃船的時(shí)間均為1小時(shí),每只租船必須坐滿,租船最低總費(fèi)用為______元,租船的總費(fèi)用共有_____種可能.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)名男生和名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) |
(1)用分層抽樣在選取人,再隨機(jī)抽取人,求抽取的人都是女生的概率;
(2)完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
上網(wǎng)時(shí)間少于分鐘 | 上網(wǎng)時(shí)間不少于分鐘 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn).曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)過點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元五世紀(jì),數(shù)學(xué)家祖沖之估計(jì)圓周率的值的范圍是:3.1415926<<3.1415927,為紀(jì)念祖沖之在圓周率的成就,把3.1415926稱為“祖率”,這是中國(guó)數(shù)學(xué)的偉大成就.某小學(xué)教師為幫助同學(xué)們了解“祖率”,讓同學(xué)們把小數(shù)點(diǎn)后的7位數(shù)字1,4,1,5,9,2,6進(jìn)行隨機(jī)排列,整數(shù)部分3不變,那么可以得到大于3.14的不同數(shù)字有( )
A.2280B.2120C.1440D.720
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com