【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.,直線(xiàn)l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線(xiàn)l的極坐標(biāo)方程;
(2)點(diǎn)P的極坐標(biāo)為(1, ),直線(xiàn)l與圓C相交于A(yíng),B,求|PA|+|PB|的值.

【答案】
(1)解:圓C的直角坐標(biāo)方程為(x﹣2)2+y2=2,

代入圓C得:(ρcosθ﹣2)22sin2θ=2

化簡(jiǎn)得圓C的極坐標(biāo)方程:ρ2﹣4ρcosθ+2=0

得x+y=1,∴l(xiāng)的極坐標(biāo)方程為ρcosθ+ρsinθ=1


(2)解:由 得點(diǎn)P的直角坐標(biāo)為P(0,1),

∴直線(xiàn)l的參數(shù)的標(biāo)準(zhǔn)方程可寫(xiě)成

代入圓C得:

化簡(jiǎn)得: ,

,∴t1<0,t2<0


【解析】(1) 代入圓C得圓C的極坐標(biāo)方程;直線(xiàn)l的參數(shù)方程轉(zhuǎn)化成普通方程,進(jìn)而求得直線(xiàn)l的極坐標(biāo)方程;(2)將直線(xiàn)l的參數(shù)方程代入圓的方程,求得關(guān)于t的一元二次方程,令A(yù),B對(duì)應(yīng)參數(shù)分別為t1 , t2 , 根據(jù)韋達(dá)定理、直線(xiàn)與圓的位置關(guān)系,即可求得|PA|+|PB|的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的底面是銳角三角形,則存在過(guò)點(diǎn)A的平面(

A.與直線(xiàn)BC和直線(xiàn)A1B1都平行
B.與直線(xiàn)BC和直線(xiàn)A1B1都垂直
C.與直線(xiàn)BC平行且直線(xiàn)A1B1垂直
D.與直線(xiàn)BC和直線(xiàn)A1B1所成角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題: ①若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,則Sn , S2n﹣Sn , S3n﹣S2n是等差數(shù)列;
②若數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,則Sn , S2n﹣Sn , S3n﹣S2n是等比數(shù)列;
③若數(shù)列{an},{bn}均為等差數(shù)列,則數(shù)列{an+bn}為等差數(shù)列;
④若數(shù)列{an},{bn}均為等比數(shù)列,則數(shù)列{anbn}為等比數(shù)列
其中真命題的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)設(shè)的校本課程分別有人文科學(xué)、自然科學(xué)、藝術(shù)體育三個(gè)課程類(lèi)別,每種課程類(lèi)別開(kāi)設(shè)課程數(shù)及學(xué)分設(shè)定如下表所示:

人文科學(xué)類(lèi)

自然科學(xué)類(lèi)

藝術(shù)體育類(lèi)

課程門(mén)數(shù)

4

4

2

每門(mén)課程學(xué)分

2

3

1

學(xué)校要求學(xué)生在高中三年內(nèi)從中選修3門(mén)課程,假設(shè)學(xué)生選修每門(mén)課程的機(jī)會(huì)均等.
(Ⅰ)甲至少選1門(mén)藝術(shù)體育類(lèi)課程,同時(shí)乙至多選1門(mén)自然科學(xué)類(lèi)課程的概率為多少?
(Ⅱ)求甲選的3門(mén)課程正好是7學(xué)分的概率;
(Ⅲ)設(shè)甲所選3門(mén)課程的學(xué)分?jǐn)?shù)為X,寫(xiě)出X的分布列,并求出X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log (x2+ bx+ )的單調(diào)遞增區(qū)間為(

A.[﹣2,+∞)
B.(﹣∞,﹣2)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) (a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過(guò)點(diǎn)F1且垂直于x軸的直線(xiàn)與該雙曲線(xiàn)的左支交于A(yíng)、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長(zhǎng)為12,則ab取得最大值時(shí)該雙曲線(xiàn)的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種.若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(Ⅰ)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量Z~N(1,1),其正態(tài)分布密度曲線(xiàn)如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值為( )
附:若Z~N(μ,σ2),則 P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.

A.6038
B.6587
C.7028
D.7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離散型隨機(jī)變量X的分布列為

X

1

2

3

P

P1

P2

P3

則EX=2的充要條件是(
A.P1=P2
B.P2=P3
C.P1=P3
D.P1=P2=P3

查看答案和解析>>

同步練習(xí)冊(cè)答案