【題目】如圖,某市新體育公園的中心廣場(chǎng)平面圖如圖所示,在y軸左側(cè)的觀(guān)光道曲線(xiàn)段是函數(shù),時(shí)的圖象且最高點(diǎn)B-1,4,在y軸右側(cè)的曲線(xiàn)段是以CO為直徑的半圓弧

(1)試確定A,的值;

(2)現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO單位,在點(diǎn)C與半圓弧上的一點(diǎn)D之間設(shè)計(jì)為直線(xiàn)段造價(jià)為2萬(wàn)元/米,從D到點(diǎn)O之間設(shè)計(jì)為沿半圓弧的弧形造價(jià)為1萬(wàn)元/米設(shè)弧度試用來(lái)表示修建步行道的造價(jià)預(yù)算,并求造價(jià)預(yù)算的最大值?只考慮步行道的長(zhǎng),不考慮步行道的寬度

【答案】1;2造價(jià),,時(shí)取極大值,也即造價(jià)預(yù)算最大值為萬(wàn)元

【解析】

試題分析:(1五點(diǎn)法可求得21求出點(diǎn)坐標(biāo),得半圓的半徑,用表示出弦長(zhǎng)和弧長(zhǎng),由題意可得造價(jià),,下面用導(dǎo)數(shù)的知識(shí)求出的最大值

試題解析(1)因?yàn)?/span>最高點(diǎn)B-1,4,所以A=4;

,

因?yàn)?/span>

代入點(diǎn)B-1,4,

;

(2)(1)可知

,得點(diǎn)C,

取CO中點(diǎn)F,連結(jié)DF,因?yàn)榛D為半圓弧,所以

,則圓弧段造價(jià)預(yù)算為萬(wàn)元,

中,,則直線(xiàn)段CD造價(jià)預(yù)算為萬(wàn)元

所以步行道造價(jià)預(yù)算,

得當(dāng)時(shí),,

當(dāng)時(shí),,即上單調(diào)遞增;

當(dāng)時(shí),,即上單調(diào)遞減

所以時(shí)取極大值,也即造價(jià)預(yù)算最大值為萬(wàn)元……16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).

(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

積極參加班級(jí)工作

不太主動(dòng)參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)?并說(shuō)明理由.

參考公式與臨界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某集團(tuán)為了獲得更大的收益,每年要投入一定的資金用于廣告促銷(xiāo).經(jīng)調(diào)查投入廣告費(fèi)t(百萬(wàn)元),可增加銷(xiāo)售額約為-t25t(百萬(wàn)元)(0t5) (注:收益=銷(xiāo)售額-投放)

1)若該公司將當(dāng)年的廣告費(fèi)控制在3百萬(wàn)元之內(nèi),則應(yīng)投入多少?gòu)V告費(fèi),才能使該公司由此獲得的收益最大?

2)現(xiàn)該公司準(zhǔn)備共投入3百萬(wàn)元,分別用于廣告促銷(xiāo)和技術(shù)改造.經(jīng)預(yù)測(cè),每投入技術(shù)改造費(fèi)x(百萬(wàn)元),可增加的銷(xiāo)售額約為-x3x23x(百萬(wàn)元).請(qǐng)?jiān)O(shè)計(jì)一個(gè)資金分配方案,使該公司由此獲得的收益最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

2)若函數(shù)上的最小值為3,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C:ρsin2θ=2acos θ(a>0),過(guò)點(diǎn)P(-2,-4)的直線(xiàn)l: (t為參數(shù))與曲線(xiàn)C相交于M,N兩點(diǎn).

(1)求曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為原點(diǎn),離心率,其中一個(gè)焦點(diǎn)的坐標(biāo)為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),設(shè)動(dòng)點(diǎn)的運(yùn)動(dòng)軌跡為若點(diǎn)滿(mǎn)足: 其中上的點(diǎn).直線(xiàn)的斜率之積為,試說(shuō)明:是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC邊上的中線(xiàn)AD長(zhǎng)為3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案