【題目】如圖1所示,在等腰梯形ABCD中,,,垂足為E,,將沿EC折起到的位置,如圖2所示,使平面平面ABCE.
(1)連結(jié)BE,證明:平面;
(2)在棱上是否存在點G,使得平面,若存在,直接指出點G的位置不必說明理由,并求出此時三棱錐的體積;若不存在,請說明理由.
【答案】(1)證明見解析;(2)存在,點G為的中點,.
【解析】
(1)通過面面垂線的性質(zhì)定理,證得平面ABCE,由此證得.利用勾股定理計算證明,從而證得平面.
(2)通過線面平行的判定定理,判斷出點G為的中點.利用換頂點的方法,通過,來計算出三棱錐的體積.
1因為平面平面ABCE,平面平面,平面,所以平面ABCE,
又因為平面ABCE,所以 ,又,滿足,所以,
又,所以平面.
2在棱上存在點G,使得平面,
此時點G為的中點.,
由1知,平面ABCE,所以,
又,所以平面,
所以CE為三棱錐的高,且,
在中,,G為斜邊的中點,
所以,
所以.
故,在棱上存在點G,使得平面,
此時三棱錐的體積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某芯片公司對今年新開發(fā)的一批5G手機芯片進(jìn)行測評,該公司隨機調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.
(1)求這100顆芯片評測分?jǐn)?shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).
(2)芯片公司另選100顆芯片交付給某手機公司進(jìn)行測試,該手機公司將每顆芯片分別裝在3個工程手機中進(jìn)行初測。若3個工程手機的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個工程手機中只要有2個評分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個工程手機中僅1個評分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個工程手機中進(jìn)行二測,二測時,2個工程手機的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個工程手機中只要有1個評分沒達(dá)到11萬分,手機公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機公司測試部門預(yù)算的測試經(jīng)費為10萬元,試問預(yù)算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若,求曲線在處的切線方程;
(2)設(shè)函數(shù)若至少存在一個,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)試判斷函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)在上有且僅有一個零點,
(i)求證:此零點是的極值點;
(ⅱ)求證:.
(本題可能會用到的數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的導(dǎo)函數(shù)在上有三個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(a,b∈R)為奇函數(shù).
(1)求b值;
(2)當(dāng)a=﹣2時,存在x0∈[1,4]使得不等式f(x0)≤t成立,求實數(shù)t的取值范圍;
(3)當(dāng)a≥1時,求證:函數(shù)g(x)=f(2x)﹣c(c∈R)在區(qū)間(﹣∞,﹣1]上至多有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,、分別是棱、的中點,、分別是線段與上的點,則與平面平行的直線有( )
A.0條B.1條C.2條D.無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當(dāng)時,求數(shù)列的前項和的最小值;
(3)若,問是否存在實數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com