【題目】已知橢圓的方程為,圓軸相切于點,與軸正半軸相交于、兩點,且,如圖1.

1)求圓的方程;

2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分;

3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線軸交于點,直線軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.

【答案】1;(2)證明見解析;(3)是,.

【解析】

1)根據(jù)已知條件設(shè)出圓心坐標(biāo),半徑為圓心縱坐標(biāo),利用弦長公式,可求出圓的方程;

2)先求出點坐標(biāo),設(shè)出直線方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,即可求得,命題得證;

3)設(shè),求出直線、直線方程,進(jìn)而求出點與點的坐標(biāo),然后四邊形的面積用點與點的坐標(biāo)表示,計算可得定值.

1)依題意,設(shè)圓心,

,解得

所求的方程為;

2代入圓方程,得

若過點的直線斜率不存在,此時軸上,

,射線平分,

若過點的直線斜率存在,設(shè)其方程為

聯(lián)立,消去,

設(shè),,

,

,

射線平分,

3)設(shè),

直線方程為,

,即,

直線方程為,

,即,,

,

四邊形的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高速公路隧道設(shè)計為單向三車道,每條車道寬4米,要求通行車輛限高5米,隧道全長1.5千米,隧道的斷面輪廓線近似地看成半個橢圓形狀(如圖所示).

1)若最大拱高6米,則隧道設(shè)計的拱寬至少是多少米?(結(jié)果取整數(shù))

2)如何設(shè)計拱高和拱寬,才能使半個橢圓形隧道的土方工程量最?(結(jié)果取整數(shù))

參考數(shù)據(jù):,橢圓的面積公式為,其中,分別為橢圓的長半軸和短半軸長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形的邊長為,將它沿高折疊,使點與點間的距離為,則四面體外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:參數(shù)方程選講]

在直角坐標(biāo)系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若兩曲線交點為A、B,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)器生產(chǎn)商,對一次性購買兩臺機(jī)器的客戶推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修方案:

方案一:交納延保金元,在延保的兩年內(nèi)可免費維修次,超過次每次收取維修費元;

方案二:交納延保金元,在延保的兩年內(nèi)可免費維修次,超過次每次收取維修費元.

某工廠準(zhǔn)備一次性購買兩臺這種機(jī)器,現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計得下表:

維修次數(shù)

0

1

2

3

機(jī)器臺數(shù)

20

10

40

30

以上臺機(jī)器維修次數(shù)的頻率代替一臺機(jī)器維修次數(shù)發(fā)生的概率,記表示這兩臺機(jī)器超過質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).

的分布列;

以所需延保金與維修費用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,求不等式的解集;

2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù),,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將)的圖象上的所有的點(  )

A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標(biāo)原點).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案