【題目】據(jù)統(tǒng)計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現(xiàn)旅游收入48.67億元,同比分別增長44.57%55.22%.旅游公司規(guī)定:若公司導游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導游100名,統(tǒng)計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:

分組

頻數(shù)

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導游的獎金(單位:萬元),與其一年內旅游總收入(單位:百萬元)之間的關系為,求甲公司導游的年平均獎金;

Ⅲ)從甲、乙兩家公司旅游收入在的總人數(shù)中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導游代表旅游行業(yè)去參加座談,求參加座談的導游中有乙公司導游的概率.

【答案】 ,2.23

【解析】試題分析:(I)由頻率和為1可求得,由頻數(shù)為100可求得.進而可求得甲,乙公司的導游優(yōu)秀率,得結論.(II)先求甲公司年旅游總收入在 , 的人數(shù),再用平均數(shù)公式求甲公司導游的年平均獎金 Ⅲ)由已知按分層抽樣的方法甲公司抽取人,記為;從乙公司抽取人,記為1,2.則6人中隨機抽取2人的基本事件有15.參加座談的導游中有乙公司導游的基本事件有9個.可求所求概率.

試題解析:(I)由直方圖知: ,有,

由頻數(shù)分布表知: ,有

甲公司的導游優(yōu)秀率為:

乙公司的導游優(yōu)秀率為: ;

由于, 所以甲公司的影響度高.

II)甲公司年旅游總收入的人數(shù)為人;

年旅游總收入的人數(shù)為人;

年旅游總收入的人數(shù)為人;

故甲公司導游的年平均獎金(萬元).

Ⅲ)由已知得,年旅游總收入在的人數(shù)為15人,其中甲公司10人,乙公司5人.按分層抽樣的方法甲公司抽取人,記為;從乙公司抽取人,記為1,2.則6人中隨機抽取2人的基本事件有:

15.

參加座談的導游中有乙公司導游的基本事件有: ,,,,,,,,9個.

設事件參加座談的導游中有乙公司導游,則

 所求概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)學考試中,小明的成績在90~100分的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07,計算;

1)小明在數(shù)學考試中取得79分以上成績的概率;

2)小明考試及格的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是

A. 相關關系是一種非確定性關系

B. 線性回歸方程對應的直線,至少經(jīng)過其樣本數(shù)據(jù)點中的一個點

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 在回歸分析中,的模型比的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

I)在答題卡上填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關”?

文科生

理科生

合計

獲獎

不獲獎

合計

II將上述調査所得的頻率視為概率,現(xiàn)從該校參與競賽的學生中,任意抽取名學生獲獎學生人數(shù)為,求的分布列及數(shù)學期望.

附表及公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是邊長為的菱形,,.

(1)證明:平面;

(2)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角、所對的邊分別為、、.已知.

(1)求;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,人們對食品安全越來越重視,有機蔬菜的需求也越來越大,國家也制定出臺了一系列支持有機肥產(chǎn)業(yè)發(fā)展的優(yōu)惠政策,鼓勵和引導農(nóng)民增施有機肥,藏糧于地,藏糧于技.根據(jù)某種植基地對某種有機蔬菜產(chǎn)量與有機肥用量的統(tǒng)計,每個有機蔬菜大棚產(chǎn)量的增加量(百斤)與使用有機肥料(千克)之間對應數(shù)據(jù)如下表:

使用有機肥料(千克)

3

4

5

6

7

8

9

10

產(chǎn)量增加量 (百斤)

2.1

2.9

3.5

4.2

4.8

5.6

6.2

6.7

1)根據(jù)表中的數(shù)據(jù),試建立關于的線性回歸方程(精確到);

2 若種植基地每天早上7點將采摘的某有機蔬菜以每千克10元的價格銷售到某超市,超市以每千克15元的價格賣給顧客.已知該超市每天8點開始營業(yè),22點結束營業(yè),超市規(guī)定:如果當天16點前該有機蔬菜沒賣完,則以每千克5元的促銷價格賣給顧客(根據(jù)經(jīng)驗,當天都能全部賣完).該超市統(tǒng)計了100天該有機蔬菜在每天的16點前的銷售量(單位:千克),如表:

每天16點前的

銷售量(單位:千克)

100

110

120

130

140

150

160

頻數(shù)

10

20

16

16

14

14

10

若以100天記錄的頻率作為每天16點前銷售量發(fā)生的概率,以該超市當天銷售該有機蔬菜利潤的期望值為決策依據(jù),說明該超市選擇購進該有機蔬菜110千克還是120千克,能使獲得的利潤更大?

附:回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某人做某件事,成功的概率只有0.1.用計算器計算,如果他嘗試10次,而且每次是否成功都相互獨立,則他至少有一次成功的概率為多少(精確到0.01)?如果他嘗試20次呢?如果要保證至少成功一次的概率不小于90%,則他至少要嘗試多少次?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

同步練習冊答案