【題目】已知函數(shù).

)當(dāng)時(shí),求的單調(diào)區(qū)間;

)若函數(shù)圖象在上有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】)函數(shù)的增區(qū)間為,減區(qū)間;(.

【解析】

)將代入函數(shù)的解析式,求出該函數(shù)的定義域和導(dǎo)數(shù),然后分別解不等式可得出函數(shù)的增區(qū)間和減區(qū)間;

)令得出,問(wèn)題轉(zhuǎn)化為:當(dāng)直線(xiàn)與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn)時(shí),求實(shí)數(shù)的取值范圍,并利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性、極值和端點(diǎn)函數(shù)值,利用數(shù)形結(jié)合思想可得出實(shí)數(shù)的取值范圍,即可求出實(shí)數(shù)的取值范圍.

)當(dāng)時(shí),,定義域?yàn)?/span>,

.

,即,解得;

,即,解得.

因此,函數(shù)的增區(qū)間為,減區(qū)間;

)由已知得:有兩個(gè)不相等的實(shí)數(shù)根.

,由.

當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù);

當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù).

所以,函數(shù)處取得極小值,

,,

當(dāng)時(shí),直線(xiàn)與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),,

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬(wàn)元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:

使用年限

2

3

4

5

6

維修費(fèi)用

2.2

3.8

5.5

6.5

7.0

(1)畫(huà)出散點(diǎn)圖;

(2)求關(guān)于的線(xiàn)性回歸方程;

(3)估計(jì)使用年限為10年時(shí)所支出的年平均維修費(fèi)用是多少?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,頂點(diǎn)為,,,.

(1)求橢圓的方程;

(2)若是橢圓上除頂點(diǎn)外的任意一點(diǎn),直線(xiàn)軸于點(diǎn),直線(xiàn)于點(diǎn).設(shè)的斜率為的斜率為,試問(wèn)是否為定值并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬(wàn)元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:

使用年限

2

3

4

5

6

維修費(fèi)用

2.2

3.8

5.5

6.5

7.0

(1)畫(huà)出散點(diǎn)圖;

(2)求關(guān)于的線(xiàn)性回歸方程;

(3)估計(jì)使用年限為10年時(shí)所支出的年平均維修費(fèi)用是多少?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照國(guó)家質(zhì)量標(biāo)準(zhǔn):某種工業(yè)產(chǎn)品的質(zhì)量指標(biāo)值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設(shè)備生產(chǎn)這種產(chǎn)品,為了檢測(cè)這兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對(duì)規(guī)定的質(zhì)量指標(biāo)值進(jìn)行檢測(cè).表1是甲套設(shè)備的樣本頻數(shù)分布表,圖1是乙套設(shè)備的樣本頻率分布直方圖.

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

表1:甲套設(shè)備的樣本頻數(shù)分布表

(1)將頻率視為概率,若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?

(2)填寫(xiě)下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值與甲乙兩套設(shè)備的選擇有關(guān):

甲套設(shè)備

乙套設(shè)備

合計(jì)

合格品

不合格品

合計(jì)

(3)根據(jù)表和圖,對(duì)甲、乙兩套設(shè)備的優(yōu)劣進(jìn)行比較.參考公式及數(shù)據(jù):x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元.

1)寫(xiě)出月總成本(萬(wàn)元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

2)已知該產(chǎn)品銷(xiāo)售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn);

3)當(dāng)月產(chǎn)量為多少?lài)崟r(shí), 每噸平均成本最低,最低成本是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知mR,命題p:對(duì)任意x[0,1],不等式x22x1≥m23m恒成立,命題q:存在x[1,1],使得m≤2x1;

)若命題p為真命題,求m的取值范圍;

)若命題q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)療器械公司在全國(guó)共有個(gè)銷(xiāo)售點(diǎn),總公司每年會(huì)根據(jù)每個(gè)銷(xiāo)售點(diǎn)的年銷(xiāo)量進(jìn)行評(píng)價(jià)分析.規(guī)定每個(gè)銷(xiāo)售點(diǎn)的年銷(xiāo)售任務(wù)為一萬(wàn)四千臺(tái)器械.根據(jù)這個(gè)銷(xiāo)售點(diǎn)的年銷(xiāo)量繪制出如下的頻率分布直方圖.

(1)完成年銷(xiāo)售任務(wù)的銷(xiāo)售點(diǎn)有多少個(gè)?

(2)若用分層抽樣的方法從這個(gè)銷(xiāo)售點(diǎn)中抽取容量為的樣本,求該五組,,,(單位:千臺(tái))中每組分別應(yīng)抽取的銷(xiāo)售點(diǎn)數(shù)量.

(3)在(2)的條件下,從該樣本中完成年銷(xiāo)售任務(wù)的銷(xiāo)售點(diǎn)中隨機(jī)選取個(gè),求這兩個(gè)銷(xiāo)售點(diǎn)不在同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案