已知函數(shù)處取得極值,且
(1) 求函數(shù)的解析式;   (2) 若在區(qū)間上單調(diào)遞增,求的取值范圍
(1)。(2)得。
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,利用函數(shù)在給定點處取得極值,則得到參數(shù)的值,進(jìn)而得到函數(shù)解析式。同時根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,說明導(dǎo)函數(shù)在該區(qū)間恒大于等于零,那么可知范圍的值。
解:函數(shù)的導(dǎo)函數(shù)為,函數(shù)在處取得極值,得
,又因為,得,解得,所以。
(2)函數(shù)的導(dǎo)函數(shù),易判斷函數(shù)的單調(diào)增區(qū)間為,在區(qū)間上單調(diào)遞增,
。得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ)當(dāng)時,如果函數(shù)僅有一個零點,求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,試比較與1的大小;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分。
定義:對函數(shù),對給定的正整數(shù),若在其定義域內(nèi)存在實數(shù),使得,則稱函數(shù)為“性質(zhì)函數(shù)”。
(1)判斷函數(shù)是否為“性質(zhì)函數(shù)”?說明理由;
(2)若函數(shù)為“2性質(zhì)函數(shù)”,求實數(shù)的取值范圍;
(3)已知函數(shù)的圖像有公共點,求證:為“1性質(zhì)函數(shù)”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題共12分)
已知函數(shù),其中
(Ⅰ)討論的單調(diào)性;
(Ⅱ)求函數(shù)在〔,〕上的最小值和最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,設(shè)函數(shù)
,且函數(shù)的零點均在區(qū)間內(nèi),則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是定義在上的非負(fù)可導(dǎo)函數(shù),且滿足,對任意正數(shù)m,n,則的大小關(guān)系是______(請用,,或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分12分)已知,函數(shù)
(1)當(dāng)時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知
(1)若,試判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(2)若上恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖1所示,則  的圖象最有可能是下圖中的(   )


A               B               C                D

查看答案和解析>>

同步練習(xí)冊答案