【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:對(duì)時(shí), ;

(2)當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù).

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)函數(shù)求導(dǎo),再求導(dǎo)得恒成立,又因?yàn)?/span>恒成立;

(2)由(1)可知,當(dāng)x≤0時(shí),f″(x)≤0,可得 對(duì)x∈R,f′(x)≥0,即ex≥x+1,分類討論當(dāng)x≥-1時(shí),當(dāng)x<-1時(shí),函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù)即可得解;

當(dāng)x<-1時(shí),再分0≤m≤1和m<0兩種情況進(jìn)行討論,由函數(shù)零點(diǎn)定理進(jìn)行判斷即可得到答案.

試題解析:,所以

(1)當(dāng)時(shí), ,則,令,則,當(dāng)時(shí), ,即,所以函數(shù)上為增函數(shù),即當(dāng)時(shí), ,所以當(dāng)時(shí), 恒成立,所以函數(shù)上為增函數(shù),又因?yàn)?/span>,所以當(dāng)時(shí),對(duì)恒成立.

(2)由(1)知,當(dāng)時(shí), ,所以,所以函數(shù)的減區(qū)間為,增函數(shù)為.所以,所以對(duì) , ,即.

①當(dāng)時(shí), ,又, ,即,所以當(dāng)時(shí),函數(shù)為增函數(shù),又,所以當(dāng) 時(shí), ,當(dāng)時(shí), ,所以函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),且為.

②當(dāng)時(shí),(ⅰ)當(dāng)時(shí), ,所以,所以函數(shù)上遞增,所以,且,故時(shí),函數(shù)在區(qū)間上無零點(diǎn).

(ⅱ)當(dāng)時(shí), ,令,則,所以函數(shù)上單調(diào)遞增, ,當(dāng)時(shí), ,又曲線在區(qū)間上不間斷,所以,使,故當(dāng)時(shí), ,當(dāng)時(shí), ,所以函數(shù)的減區(qū)間為,增區(qū)間為,又,所以對(duì),又當(dāng)時(shí), ,又,曲線在區(qū)間上不間斷.所以,且唯一實(shí)數(shù),使得,綜上,當(dāng)時(shí),函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有個(gè)兩零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在參加市里主辦的科技知識(shí)競賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績作為樣本,這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組,成績大于等于40分且小于50分;第二組,成績大于等于50分且小于60分;……第六組,成績大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.

(1)求成績?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)及成績?cè)趨^(qū)間內(nèi)平均成績;

(2)從成績大于等于80分的學(xué)生中隨機(jī)選3名學(xué)生,求至少有1名學(xué)生成績?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[﹣1,3m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實(shí)數(shù)a的值;
②設(shè)t1= f(x),t2=g(x),t3=2x , 當(dāng)x∈(0,1)時(shí),試比較t1 , t2 , t3的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前項(xiàng)和為Sn , 且a2=2,S5=15,數(shù)列{bn}的前項(xiàng)和為Tn , 且b1= ,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求數(shù)列{an}通項(xiàng)公式an及前項(xiàng)和Sn
(Ⅱ) 求數(shù)列{bn}通項(xiàng)公式bn及前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過8萬元時(shí),按銷售利潤的15%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過8萬元時(shí),若超出A萬元,則超出部分按log5(2A+1)進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出獎(jiǎng)金y關(guān)于銷售利潤x的關(guān)系式;
(2)如果業(yè)務(wù)員小江獲得3.2萬元的獎(jiǎng)金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣5x﹣18
(1)求不等式g(x)<0的解集
(2)若對(duì)一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知命題p:方程 表示焦點(diǎn)在y軸的橢圓;命題q:關(guān)于x的不等式x2﹣2x+m>0的解集是R; 若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,

(Ⅰ)求圖中的值;

(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;

(Ⅲ)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如表所示,求數(shù)學(xué)成績?cè)?/span>之外的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案