【題目】已知O是△ABC內(nèi)一點,若 , 則△AOC與△ABC的面積的比值為 ( )
A.
B.
C.
D.

【答案】C
【解析】過A點作OB的平行線,在平行線上取線段AD,使得AD=2OB,延長OB至E使得BE=OB,因為AD平行且等于OE,四邊形ADEO為平行四邊形, , 對角線,
所以三角形AOD的面積是三角形AOC面積的三倍,
設(shè)三角形AOC面積為X,則三角形AOD的面積為3X,
因為AD平行于OB,且AD=2OB,設(shè)CD與AB相交于F點,
則有AF:FB=DF:FO=AD:OB=2:1,
所以三角形AOF的面積為X,三角形ACF的面積為2X,因為AF:FB=2:1,
所以三角形CFB面積為X,故三角形ABC總面積為3X,
故兩三角形面積之比為1:3,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市上年度電價為0.80元/千瓦時,年用電量為a千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.75元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時)經(jīng)測算,下調(diào)電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數(shù)為0.2a.試問當(dāng)?shù)仉妰r最低為多少時,可保證電力部門的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

2)當(dāng)時,的最大值為2,求的值,并求出的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.
某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù) ,請你根據(jù)上面探究結(jié)果,計算
=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓中心在原點,焦點在軸上, 、分別為上、下焦點,橢圓的離心率為, 為橢圓上一點且

(1)若的面積為,求橢圓的標(biāo)準(zhǔn)方程;

(2)若的延長線與橢圓另一交點為,以為直徑的圓過點, 為橢圓上動點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當(dāng)m=1時,解關(guān)于x的不等式xf(x)≤0;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值.
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的各條棱長均相等, 的中點, 分別是線段和線段上的動點(含端點),且滿足.當(dāng)運動時,下列結(jié)論中不正確的是( )

A. 平面平面 B. 三棱錐的體積為定值

C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為

查看答案和解析>>

同步練習(xí)冊答案