【題目】給出40個數(shù):1,2,4,7,11,16,…,要計算這40個數(shù)的和,如圖給出了該問題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( )

A. ; B.

C. ; D. ;

【答案】D

【解析】由于要計算40個數(shù)的和,故循環(huán)要執(zhí)行40次,由于循環(huán)變量的初值為1,步長為1,故終值應(yīng)為40,即①中應(yīng)填寫i≤40;又由第1個數(shù)是1;第2個數(shù)比第1個數(shù)大1即1+1=2;第3個數(shù)比第2個數(shù)大2即2+2=4;第4個數(shù)比第3個數(shù)大3即4+3=7;…故②中應(yīng)填寫p=p+i,綜上可知,應(yīng)選D.

點睛:本題考查學(xué)生的是框圖的循環(huán)結(jié)構(gòu),屬于中檔題目.解題的關(guān)鍵是根據(jù)框圖得出其運算律,由運算規(guī)則得出不等式.要判斷程序的運行結(jié)果,我們要先根據(jù)已知判斷程序的功能,構(gòu)造出相應(yīng)的數(shù)學(xué)模型,將程序問題轉(zhuǎn)化為一個數(shù)學(xué)問題,得出數(shù)學(xué)關(guān)系式,進(jìn)而求出我們所要的答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機器由于使用時間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如下表所示:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

4

12

8

每小時生產(chǎn)有缺損零件數(shù)y(個)

11

9

8

5

(1)作出散點圖;

(2)如果yx線性相關(guān),求出回歸直線方程;

(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在實數(shù)集上的圖象是連續(xù)不斷的,且對任意實數(shù)存在常數(shù)使得恒成立,則稱是一個“關(guān)于函數(shù)”.現(xiàn)有下列“關(guān)于函數(shù)”的結(jié)論:

①常數(shù)函數(shù)是“關(guān)于函數(shù)”;

②正比例函數(shù)必是一個“關(guān)于函數(shù)”;

③“關(guān)于函數(shù)”至少有一個零點;

是一個“關(guān)于函數(shù)”.

其中正確結(jié)論的序號是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線 的一個焦點在拋物線的準(zhǔn)線上,則直線軸的交點到雙曲線的一條漸近線的距離是( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.

(1)對數(shù)函數(shù)都是單調(diào)函數(shù);

(2)至少有一個整數(shù),它既能被11整除,又能被9整除;

(3)x{x|x0},

(4)x0Z,log2x02.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求函數(shù)的零點個數(shù);

(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

同步練習(xí)冊答案