【題目】如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
【答案】
(1)解:聯(lián)立得: ,
解得: ,
∴圓心C(3,2).
若k不存在,不合題意;
若k存在,設(shè)切線為:y=kx+3,可得圓心到切線的距離d=r,即 =1,
解得:k=0或k=﹣ ,
則所求切線為y=3或y=﹣ x+3
(2)解:設(shè)點M(x,y),由MA=2MO,知: =2 ,
化簡得:x2+(y+1)2=4,
∴點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,
又∵點M在圓C上,C(a,2a﹣4),
∴圓C與圓D的關(guān)系為相交或相切,
∴1≤|CD|≤3,其中|CD|= ,
∴1≤ ≤3,
解得:0≤a≤
【解析】(1)聯(lián)立直線l與直線y=x﹣1解析式,求出方程組的解得到圓心C坐標(biāo),根據(jù)A坐標(biāo)設(shè)出切線的方程,由圓心到切線的距離等于圓的半徑,列出關(guān)于k的方程,求出方程的解得到k的值,確定出切線方程即可;(2)設(shè)M(x,y),由MA=2MO,利用兩點間的距離公式列出關(guān)系式,整理后得到點M的軌跡為以(0,﹣1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相交或相切,根據(jù)兩圓的半徑長,得出兩圓心間的距離范圍,利用兩點間的距離公式列出不等式,求出不等式的解集,即可得到a的范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率。
(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.學(xué)#科@網(wǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).
節(jié)氣 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) | 驚蟄(寒露) | 春分(秋分) |
晷影長(寸) | 135 | 75.5 | |||||
節(jié)氣 | 清明(白露) | 谷雨(處暑) | 立夏(立秋) | 小滿(大暑) | 芒種(小暑) | 夏至 | |
晷影長(寸) | 16.0 |
已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長應(yīng)為__________寸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在處的切線方程為,求和的值;
(II)討論方程的解的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.
(1)求橢圓的方程;
(2)若直線與直線交于點,線段的中點為,證明:點關(guān)于直線的對稱點在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動點,ABCD是扇形的內(nèi)接矩形.記∠COP=α,則矩形ABCD的面積最大是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,其產(chǎn)量分別為45個與55個,所用原料分別為A、B兩種規(guī)格的金屬板,每張面積分別為2m2與3m2 . 用A種規(guī)格的金屬板可造甲種產(chǎn)品3個,乙種產(chǎn)品5個;用B種規(guī)格的金屬板可造甲、乙兩種產(chǎn)品各6個.問A、B兩種規(guī)格的金屬板各取多少張,才能完成計劃,并使總的用料面積最省?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的偶函數(shù)f(x)滿足對于任意實數(shù)x,都有f(1+x)=f(1﹣x),且當(dāng)0≤x≤1時,f(x)=3x+1 .
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[1,3]時,求f(x)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com