【題目】對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體和(是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本.用表示元素和同時(shí)出現(xiàn)在樣本中的概率.
(1)求的表達(dá)式(用,表示);
(2)求所有的和.
【答案】(1) ;(2)6
【解析】
(1)根據(jù)組合數(shù)的公式,以及古典概型的概率計(jì)算公式和相互獨(dú)立事件的概率計(jì)算公式,即可求解;
(2)當(dāng)都在中時(shí)求得的和為1,當(dāng)同時(shí)在中時(shí),求得的和為1,當(dāng)在中,在中時(shí)得到的和為4,即可求解.
(1)由題意,從和個(gè)式子中隨機(jī)抽取2個(gè),分別有和個(gè)基本事件,
所以的表達(dá)式為.
(2)當(dāng)都在中時(shí),可得,
而從中選兩個(gè)數(shù)的不同方法數(shù)為,則的和為1;
當(dāng)同時(shí)在中時(shí),同理可得的和為1;
當(dāng)在中,在中時(shí),,
而從中選取一個(gè)數(shù),從中選一個(gè)數(shù)的不同方法數(shù)為,
則的和為4,所以所有的和為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】檢驗(yàn)中心為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,對(duì)份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)次;②混合檢驗(yàn),即將其中(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,再對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為點(diǎn).當(dāng)時(shí),根據(jù)和的期望值大小,討論當(dāng)取何值時(shí),采用逐份檢驗(yàn)方式好?
(參考數(shù)據(jù):,,,,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著運(yùn)動(dòng)app和手環(huán)的普及和應(yīng)用,在朋友圈、運(yùn)動(dòng)圈中出現(xiàn)了每天1萬(wàn)步的健身打卡現(xiàn)象,“日行一萬(wàn)步,健康一輩子”的觀念廣泛流傳.“健步達(dá)人”小王某天統(tǒng)計(jì)了他朋友圈中所有好友(共500人)的走路步數(shù),并整理成下表:
分組(單位:千步) | ||||||||
頻數(shù) | 60 | 240 | 100 | 60 | 20 | 18 | 0 | 2 |
(1)請(qǐng)估算這一天小王朋友圈中好友走路步數(shù)的平均數(shù)(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)值作代表);
(2)若用表示事件“走路步數(shù)低于平均步數(shù)”,試估計(jì)事件發(fā)生的概率;
(3)若稱(chēng)每天走路不少于8千步的人為“健步達(dá)人”,小王朋友圈中歲數(shù)在40歲以上的中老年人共有300人,其中健步達(dá)人恰有150人,請(qǐng)?zhí)顚?xiě)下面列聯(lián)表.根據(jù)列聯(lián)表判斷,有多大把握認(rèn)為,健步達(dá)人與年齡有關(guān)?
健步達(dá)人 | 非健步達(dá)人 | 合計(jì) | |
40歲以上 | |||
不超過(guò)40歲 | |||
合計(jì) |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為拋物線上不同的兩點(diǎn),且,點(diǎn)且于點(diǎn).
(1)求的值;
(2)過(guò)軸上一點(diǎn) 的直線交于,兩點(diǎn),在的準(zhǔn)線上的射影分別為,為的焦點(diǎn),若,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F2.原點(diǎn)到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交x軸于點(diǎn)N,M,若直線OT與以MN為直徑的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若,使得,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系xOy中,橢圓(a>b>0)的短軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)斜率為1且經(jīng)過(guò)橢圓的右焦點(diǎn)的直線交橢圓于P1、P2兩點(diǎn),P是橢圓上任意一點(diǎn),若(λ,μ∈R),證明:λ2+μ2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績(jī)優(yōu)秀是否對(duì)選擇物理有影響,對(duì)該校2018級(jí)的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計(jì) | |
數(shù)學(xué)成績(jī)優(yōu)秀 | |||
數(shù)學(xué)成績(jī)不優(yōu)秀 | 260 | ||
總計(jì) | 600 | 1000 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com