【題目】已知定義域為的函數(shù)滿足:(1)對任意,恒有成立;(2)當(dāng)時,.給出如下結(jié)論:

①對任意,有

②函數(shù)的值域為

③存在,使得

函數(shù)在區(qū)間上單調(diào)遞減的充要條件是存在,使得”.

上述結(jié)論正確有(

A.1B.2C.3D.4

【答案】C

【解析】

依據(jù)題中條件注意研究每個選項的正確性,連續(xù)利用題中第(1)個條件得到①正確;連續(xù)利用題中第(2)個條件得到②正確;利用反證法及2x變化如下:2,4,8,16,32,判斷③命題錯誤;據(jù)①②③的正確性可得④是正確的.

f2m)=f22m1)=2f2m1)=2m1f2),正確;

②取x∈(2m,2m+1],則∈(1,2]f)=2,從而

fx)=2f)=2mf)=2m+1x,其中,m0,1,2,

從而fx)∈[0+∞),正確;

f2n+1)=2n+12n1,假設(shè)存在n使f2n+1)=9,即存在x1x2,10,又,2x變化如下:2,48,1632,顯然不存在,所以該命題錯誤;

④根據(jù)前面的分析容易知道該選項正確;

綜合有正確的序號是①②④.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.,.

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自201911日起,個人所得稅起征點和稅率作了調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:

1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調(diào)整后小明的實際收入比調(diào)整前增加了多少?

2)某稅務(wù)部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

先從收入在的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機變量表示抽到作為宣講員的收入在元的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的兩個周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時,,,其中k>0.若在區(qū)間(09]上,關(guān)于x的方程8個不同的實數(shù)根,則k的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,直線l過點且與x軸不重合,l交圓CD兩點,過的平行線,交于點E.設(shè)點E的軌跡為.

1)求的方程;

2)直線相切于點M,與兩坐標(biāo)軸的交點為AB,直線經(jīng)過點M且與垂直,的另一個交點為N,當(dāng)取得最小值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點

1)求橢圓的方程

2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于兩點,問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,討論的單調(diào)性;

2)設(shè)函數(shù),若存在不相等的實數(shù),,使得,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,曲線極坐標(biāo)方程為.

(1)求直線的普通方程以及曲線的參數(shù)方程;

(2)當(dāng)時,為曲線上動點,求點到直線距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案