【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為
(Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

【答案】解:(Ⅰ)由已知 , , ;
(Ⅱ)由(Ⅰ)知f(1)>1,f(2)>1;當(dāng)n≥3時(shí),猜想:f(n)<1.
下面用數(shù)學(xué)歸納法證明:
①由(Ⅰ)當(dāng)n=3時(shí),f(n)<1;
②假設(shè)n=k(k≥3)時(shí),f(n)<1,即 ,那么 = = = ,
所以當(dāng)n=k+1時(shí),f(n)<1也成立.由(1)和(2)知,當(dāng)n≥3時(shí),f(n)<1.
所以當(dāng)n=1,和n=2時(shí),f(n)>1;當(dāng)n≥3時(shí),f(n)<1
【解析】(1)此問根據(jù)通項(xiàng)公式計(jì)算出前n項(xiàng)的和.當(dāng)n=1時(shí),f(1)=s2;當(dāng)n=2時(shí),f(2)=s4﹣s1=a2+a3;當(dāng)n=3時(shí),f(3)=s6﹣s2 . (2)當(dāng)n=1時(shí), ≥1.當(dāng)n≥2時(shí),f(n)中沒有a1 , 因此都小于1.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,(本題不作圖不得分)

(1)求 的最大值和最小值;

(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)B且斜率為k的動(dòng)直線l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線相交于A、B兩點(diǎn).

1)求證:

2)當(dāng)的面積等于時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:mx2+3my2=1(m>0)的長軸長為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程和離心率.
(2)設(shè)點(diǎn)A(3,0),動(dòng)點(diǎn)B在y軸上,動(dòng)點(diǎn)P在橢圓C上,且點(diǎn)P在y軸的右側(cè).若BA=BP,求四邊形OPAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買個(gè)易損零件,或每臺(tái)都購買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買臺(tái)機(jī)器的同時(shí)應(yīng)購買個(gè)還是個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)將函數(shù)f(2x)的圖象向右平移 個(gè)單位得到函數(shù)g(x)的圖象,若x∈[ ],求函數(shù)g(x)的值域;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)= +1,A∈(0, ),a=2 ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正三角形ABC中,D,EF分別為各邊的中點(diǎn),G,H分別為DE,AF的中點(diǎn),將沿DE,EFDF折成正四面體,則在此正四面體中,下列說法正確的是______

異面直線PGDH所成的角的余弦值為;

;

PD所成的角為;

EF所成角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知P是直線上的一個(gè)動(dòng)點(diǎn),圓Q的方程為:設(shè)以線段PQ為直徑的圓E與圓Q交于C,D兩點(diǎn).

證明:PCPD均與圓Q相切;

當(dāng)時(shí),求點(diǎn)P的坐標(biāo);

求線段CD長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案