【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

【答案】B
【解析】解:當x>1時, ,∴p:x>1, 為假命題;
對于q,當x<3時,x3<3x;當x=3時,x3=3x;當x>3時,x3<3x
∴命題q:x∈R,x3>3x為假命題,則¬q為真命題.
∴p∨(¬q)為真命題.
故選:B.
【考點精析】利用復合命題的真假對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知點A(-1,-2),B(1,3),P為x軸上的一點,求|PA|+|PB|的最小值;

(2)已知點A(2,2),B(3,4),P為x軸上一點,求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標方程.
(1)求曲線C的極坐標方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設線段AB的中點為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C上任意一點到的距離與到點 的距離之比均為.

(1)求曲線C的方程;

(2)設點,過點作兩條相異直線分別與曲線C相交于兩點,且直線和直線的傾斜角互補,求線段的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣ax+a(a∈R).
(1)討論f(x)的單調性;
(2)若f(x)≤0恒成立,證明:當0<x1<x2時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[﹣1,0]上的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經研究發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散.設f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經過實驗分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學生的注意力最集中?能堅持多久?
(2)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到185,那么經過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學根據(jù)2002﹣2014年期間學生的興趣愛好,分別創(chuàng)建了“攝影”、“棋類”、“國學”三個社團,據(jù)資料統(tǒng)計新生通過考核遠拔進入這三個社團成功與否相互獨立,2015年某新生入學,假設他通過考核選拔進入該校的“攝影”、“棋類”、“國學”三個社團的概率依次為m, ,n,已知三個社團他都能進入的概率為 ,至少進入一個社團的概率為 ,且m>n.
(1)求m與n的值;
(2)該校根據(jù)三個社團活動安排情況,對進入“攝影”社的同學增加校本選修字分1分,對進入“棋類”社的同學增加校本選修學分2分,對進入“國學”社的同學增加校本選修學分3分.求該新同學在社團方面獲得校本選修課字分分數(shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,則實數(shù)a的取值范圍為(
A.[﹣ , ]
B.[﹣ ]
C.[0, ]
D.[0,1]

查看答案和解析>>

同步練習冊答案