精英家教網 > 高中數學 > 題目詳情

【題目】求與圓(x﹣2)2+y2=2相切且在x軸,y軸上截距相等的直線方程.

【答案】解:若直線在x軸,y軸上截距相等, 則直線過原點,或直線斜率為﹣1,
當直線過原點時,設直線方程為:y=kx,即kx﹣y=0,
則由直線與圓(x﹣2)2+y2=2相切得: ,
解得:k=±1,
即直線方程為:x﹣y=0,或x+y=0;
當直線斜率為1時,設直線方程為:x+y+C=0;
則由直線與圓(x﹣2)2+y2=2相切得:
解得:C=0,或C=﹣4,
即直線方程為:x+y﹣4=0,或x+y=0;
綜上可得直線方程為:x﹣y=0,x+y﹣4=0,或x+y=0
【解析】直線在x軸,y軸上截距相等,即直線過原點,或直線斜率為﹣1,進而得到答案.
【考點精析】掌握圓的標準方程是解答本題的根本,需要知道圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如果實數x,y滿足(x﹣2)2+y2=2,則 的范圍是(
A.(﹣1,1)
B.[﹣1,1]
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1]∪[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數y=sin(2x﹣ )的圖象,只需把函數y=sin2x的圖象上所有的點(
A.向左平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向右平行移動 個單位長度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=logax(a>0且a≠1)的圖象經過點 ,函數y=bx(b>0且b≠1)的圖象經過點 ,則下列關系式中正確的是(
A.a2>b2
B.2a>2b
C.
D.(a >b

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某研究機構對中學生記憶能力x和識圖能力y進行統(tǒng)計分析,得到如下數據:

記憶能力x

4

6

8

10

識圖能力y

3

﹡﹡﹡

6

8

由于某些原因,識圖能力的一個數據丟失,但已知識圖能力樣本平均值是5.5.
(Ⅰ)求丟失的數據;
(Ⅱ)經過分析,知道記憶能力x和識圖能力y之間具有線性相關關系,請用最小二乘法求出y關于x的線性回歸方程 ;
(III)若某一學生記憶能力值為12,請你預測他的識圖能力值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)在定義域內存在實數x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數f(x)有“飄移點”x0 . (Ⅰ)證明f(x)=x2+ex在區(qū)間 上有“飄移點”(e為自然對數的底數);
(Ⅱ)若 在區(qū)間(0,+∞)上有“飄移點”,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】到空間不共面的四點距離相等的平面的個數為(
A.1個
B.4個
C.7個
D.8個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求證:BD⊥平面POA;
(2)設點Q滿足 ,試探究:當PB取得最小值時,直線OQ與平面PBD所成角的大小是否一定大于 ?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面給出了2010年亞洲一些國家的國民平均壽命(單位:歲)

國家 平均壽命

國家 平均壽命

國家 平均壽命

國家 平均壽命

國家 平均壽命

阿曼 76.1
巴林 76.1
朝鮮 68.9
韓國 80.6
老撾 64.3
蒙古 67.6
緬甸 64.9
日本 82.8

泰國 73.7
約旦 73.4
越南 75.0
中國 74.8
伊朗 74.0
印度 66.5
文萊 77.6
也門 62.8

阿富汗 59.0
阿聯酋 76.7
東帝汶 67.3
柬埔寨 66.4
卡塔爾 77.8
科威特 74.1
菲律賓 67.8
黎巴嫩 78.5

尼泊爾 68.0
土耳其 74.1
伊拉克 68.5
以色列 81.6
新加坡 81.5
敘利亞 72.3
巴基斯坦 65.2
馬來西亞 74.2

孟加拉國 70.1
塞浦路斯 79.4
沙特阿拉伯 73.7
哈薩克斯坦68.3
印度尼西亞68.2
土庫曼斯坦65.0
吉爾吉斯斯坦69.3
烏茲別克斯坦67.9


(1)請補齊頻率分布表,并求出相應頻率分布直方圖中的a,b;

分組

頻數

頻率

[59.0,63.0)

2

0.05

[63.0,67.0)

[67.0,71.0)

[71.0,75.0)

9

0.225

[75.0,7.0)

7

0.175

[79.0,83.0]

5

0.125

合計

40

1.00


(2)請根據統(tǒng)計思想,利用(1)中的頻率分布直方圖估計亞洲人民的平均壽命.

查看答案和解析>>

同步練習冊答案