【題目】如圖,直三棱柱中,,,為的中點(diǎn).
(I)若為上的一點(diǎn),且與直線垂直,求的值;
(Ⅱ)在(I)的條件下,設(shè)異面直線與所成的角為45°,求點(diǎn)到平面的距離.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ) 取中點(diǎn),可知,利用面面垂直可證得平面,進(jìn)而得到,根據(jù)線面垂直性質(zhì)得,從而可證得;從而利用平行線分線段成比例求得結(jié)果;(Ⅱ)利用,根據(jù)異面直線成角和分別求解出所需線段長(zhǎng)和,從而構(gòu)造方程求解出點(diǎn)到面的距離.
(Ⅰ)證明:取中點(diǎn),連接
為中點(diǎn),則有
又因?yàn)槿庵?/span>為直三棱柱 平面平面
平面平面 平面
又平面
,平面,平面
平面,又平面
連接,設(shè),因?yàn)?/span>為正方形
平面,平面
為的中點(diǎn) 為的中點(diǎn)
(Ⅱ)由(Ⅰ)可知
可求得
由余弦定理可得:
連接,連接
在三棱錐及三棱錐中,
點(diǎn)到平面的距離為
又
所以,即點(diǎn)到平面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),某地區(qū)積極踐行“綠水青山就是金山銀山”的綠色發(fā)展理念年年初至年年初,該地區(qū)綠化面積(單位:平方公里)的數(shù)據(jù)如下表:
年份 | |||||||
年份代號(hào) | |||||||
綠化面積 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測(cè)該地區(qū)年年初的綠化面積,并計(jì)算年年初至年年初,該地區(qū)綠化面積的年平均增長(zhǎng)率約為多少.
(附:回歸直線的斜率與截距的最小二乘法估計(jì)公式分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,的角平分線所在直線為,邊的高線所在直線為,邊的高線所在直線為,
(1)求直線的方程;
(2)求直線的方程;
(3)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,平面,底面為菱形,,E是中點(diǎn),M是的中點(diǎn),F是上的動(dòng)點(diǎn).
(1)求證:平面平面;
(2)直線與平面所成角的正切值為,當(dāng)F是中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,,求實(shí)數(shù)的值.
(2)若,,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過(guò)原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對(duì)稱(chēng).
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線過(guò)原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于,兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1人現(xiàn)從這5名工人中隨機(jī)抽取2名.
Ⅰ求被抽取的2名工人都是初級(jí)工的概率;
Ⅱ求被抽取的2名工人中沒(méi)有中級(jí)工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,動(dòng)點(diǎn),線段與圓相交于點(diǎn),線段的長(zhǎng)度與點(diǎn)到軸的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),交圓于,兩點(diǎn),其中在線段上,在線段上,求的最小值及此時(shí)直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com