【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2) .
【解析】試題分析:(1)取的中點(diǎn),連接,根據(jù)條件證明出和即可;
(2)分別以直線為軸和軸, 點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求出平面和平面的法向量,即可求得二面角的余弦值.
試題解析:
(1)取的中點(diǎn),連接,依題意易知,
平面平面平面 .
又 ,所以平面,所以.
在和中, .
因為, 平面,所以平面.
(2)分別以直線為軸和軸, 點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,
依題意有: , , ,
設(shè)平面的一個法向量,由,得,
由,得,令,可得.
又平面的一個法向量,所以.
所以二面角的余弦值為.
注:用其他方法同樣酌情給分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項數(shù)列的前項和,且滿足.
(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在調(diào)查運(yùn)動員是否服用過興奮劑的時候,給出兩個問題作答,無關(guān)緊要的問題是:“你的身份證號碼的尾數(shù)是奇數(shù)嗎?”敏感的問題是:“你服用過興奮劑嗎?”然后要求被調(diào)查的運(yùn)動員擲一枚硬幣,如果出現(xiàn)正面,就回答第一個問題,否則回答第二個問題.由于回答哪一個問題只有被測試者自己知道,所以應(yīng)答者一般樂意如實地回答問題.若我們把這種方法用于300個被調(diào)查的運(yùn)動員,得到80個“是”的回答,則這群運(yùn)動員中服用過興奮劑的百分率大約為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面平面, 為的中點(diǎn), 是棱上的點(diǎn), , , .
(1)求證:平面平面;
(2)若二面角大小為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上,且.
(1)求證: 平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個轉(zhuǎn)盤游戲,轉(zhuǎn)盤被平均分成10等份(如圖所示),轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.游戲規(guī)則如下:兩個人參加,先確定猜數(shù)方案,甲轉(zhuǎn)動轉(zhuǎn)盤,乙猜,若猜出的結(jié)果與轉(zhuǎn)盤轉(zhuǎn)出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:
A.猜“是奇數(shù)”或“是偶數(shù)”
B.猜“是4的整數(shù)倍數(shù)”或“不是4的整數(shù)倍數(shù)”
C.猜“是大于4的數(shù)”或“不是大于4的數(shù)”
請回答下列問題:
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?
(2)為了保證游戲的公平性,你認(rèn)為應(yīng)制定哪種猜數(shù)方案?為什么?
(3)請你設(shè)計一種其他的猜數(shù)方案,并保證游戲的公平性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()經(jīng)過與兩點(diǎn).
(1)求橢圓的方程;
(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn),橢圓上一點(diǎn)滿足,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)從某班的一次期末考試中,隨機(jī)的抽取了七位同學(xué)的數(shù)學(xué)(滿分150分)、物理(滿分110分)成績?nèi)缦卤硭,?shù)學(xué)、物理成績分別用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求關(guān)于t的回歸方程;
(2)利用(1)中的回歸方程,分析數(shù)學(xué)成績的變化對物理成績的影響,并估計該班某學(xué)生數(shù)學(xué)成績130分時,他的物理成績(精確到個位).
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個極值點(diǎn)分別為, ,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com