【題目】已知函數(shù)f(x)=,數(shù)列{an}滿(mǎn)足a1=1,an+1=f(an)(n∈N*).
(1)證明數(shù)列{}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)記Sn=a1a2+a2a3+…+anan+1,求Sn.
【答案】(1)(2)
【解析】試題分析:(1)由已知得,兩邊去倒數(shù),由等差數(shù)列的定義證明是等差數(shù)列,再求出通項(xiàng)公式;(2)由裂項(xiàng)相消法求出前n項(xiàng)和。
試題解析:(1)證明:由已知得,an+1=.
∴=+3.
即-=3.
∴數(shù)列{}是首項(xiàng)=1,公差d=3的等差數(shù)列.
∴=1+(n-1)×3=3n-2.
故an= (n∈N*)
(2)∵anan+1== (-)
∴Sn=a1a2+a2a3+…+anan+1
= [(1-)+(-)+…+(-)]
= (1-)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域?yàn)椋?/span> )
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大;
(2)若a=3,b=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當(dāng)x=﹣1時(shí),函數(shù)f(x)取到最小值,且最小值為0;
(1)求f(x)解析式;
(2)關(guān)于x的方程f(x)=|x+1|﹣k+3恰有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品、,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用、和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排.通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如下表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費(fèi)用之和(萬(wàn)元) | 20 | 30 | 計(jì)劃最大資金額300萬(wàn)元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計(jì)收益(萬(wàn)元) | 80 | 60 |
如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開(kāi)展促銷(xiāo)活動(dòng),對(duì)購(gòu)買(mǎi)該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤(pán),當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為15°,邊界忽略不計(jì)) 即為中獎(jiǎng).
乙商場(chǎng):從裝有3個(gè)白球3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).
問(wèn):購(gòu)買(mǎi)該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線(xiàn)與橢圓交于, 兩點(diǎn),點(diǎn)在直線(xiàn)的左上方.若,且直線(xiàn), 分別與軸交于, 點(diǎn),求線(xiàn)段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com