【題目】已知圓過定點(diǎn),圓心在拋物線上,、為圓軸的交點(diǎn).

1)求圓半徑的最小值;

2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),是否為一定值?請證明你的結(jié)論;

3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值,并求此時(shí)圓的方程.

【答案】1;(2,證明見解析;(3

【解析】

1)設(shè)半徑為,根據(jù)拋物線方程設(shè)出圓心坐標(biāo),然后根據(jù)圓心和定點(diǎn)寫出半徑的表達(dá)式,計(jì)算的最小值即可;

2)根據(jù)(1)中的表示,寫出圓的方程,令計(jì)算出的橫坐標(biāo),計(jì)算是否為定值即可證明;

3)計(jì)算出的值,然后利用已求的值對進(jìn)行化簡,再根據(jù)基本不等式確定最大值,從而求出圓心坐標(biāo)和半徑確定出圓的方程.

1)設(shè)圓心坐標(biāo)為,半徑為,所以,取等號時(shí),所以

2)因?yàn)閳A心坐標(biāo)為,半徑,所以圓的方程為:

,所以,所以,所以,所以為定值;

3)由(2)可知:取,,

所以,,

所以

所以的最大值為,

取等號時(shí),所以,所以圓心坐標(biāo)為,半徑,

所以圓的方程為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線上的動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離相等.

1)求曲線的軌跡方程;

2)過點(diǎn)分別作射線、交曲線于不同的兩點(diǎn)、,且以為直徑的圓經(jīng)過點(diǎn).試探究直線是否過定點(diǎn)?如果是,請求出該定點(diǎn);如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是一塊邊長為7米的正方形鐵皮,其中是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個(gè)有邊落在BCCD上的長方形鐵皮,其中P上一點(diǎn).設(shè),長方形的面積為S平方米.

1)求S關(guān)于的函數(shù)解析式;

2)設(shè),求S關(guān)于t的表達(dá)式以及S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條相交線段的四個(gè)端點(diǎn)都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,,求的值;

(2)探究:是否存在常數(shù),當(dāng)變化時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)無窮數(shù)列的前項(xiàng)和分別為、,,對任意的,都有.

1)求數(shù)列的通項(xiàng)公式;

2)若為等差數(shù)列,對任意的,都有,證明:;

3)若為等比數(shù)列,,,求滿足)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:,,,,,,…,,, …,,…有如下運(yùn)算和結(jié)論:①;②數(shù)列,,,…是等比數(shù)列;③數(shù)列,,,…的前項(xiàng)和為;④若存在正整數(shù),使,則.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB是圓O的直徑,CD是圓上不同兩點(diǎn),且,O所在平面.

1)求直線PBCD所成角;

2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)談?wù)?/span>的單調(diào)性;

2)若在區(qū)間上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電動(dòng)車售后服務(wù)調(diào)研小組從汽車市場上隨機(jī)抽取20輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

1)求續(xù)駛里程在的車輛數(shù);

2)求續(xù)駛里程的平均數(shù);

3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案