對于定義域為的函數(shù),若同時滿足:①內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使上的值域為;那么把函數(shù))叫做閉函數(shù).

(1) 求閉函數(shù)符合條件②的區(qū)間;

(2) 若是閉函數(shù),求實數(shù)的取值范圍.

(1)區(qū)間為[-1,0]或[-1,1]或[0,1 ](2)


解析:

(1)由題意,上遞增,則,……………………2分

解得…………………………………………………4分    

所以,所求的區(qū)間為[-1,0]或[-1,1]或[0,1 ].   ………………………………5分

(2)若是閉函數(shù),則存在區(qū)間,在區(qū)間上,

函數(shù)的值域為          …………………………………………6分

    容易證明函數(shù)在定義域內(nèi)單調(diào)遞增,

    ∴ …………………………………………………………………7分

    ∴ 為方程的兩個實數(shù)根. ………………………………9分

    即方程有兩個不相等的實根.

………………………………………12分

解得,綜上所述,……………………………………………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)定義:對于函數(shù),.若對定義域內(nèi)的恒成立,則稱函數(shù)函數(shù).(1)請舉出一個定義域為函數(shù),并說明理由;(2)對于定義域為函數(shù),求證:對于定義域內(nèi)的任意正數(shù),均有;

(3)對于值域函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高考模擬考試數(shù)學(xué)試卷(理科) 題型:解答題

對于定義域為的函數(shù),若有常數(shù)M,使得對任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.
(1)判斷1是否為函數(shù)的“均值”,請說明理由;
(2)若函數(shù)為常數(shù))存在“均值”,求實數(shù)a的取值范圍;
(3)若函數(shù)是單調(diào)函數(shù),且其值域為區(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).
說明:對于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市崇明縣高三第一學(xué)期期末考試數(shù)學(xué) 題型:填空題

定義:對于定義域為的函數(shù),如果存在,使得成立,稱函數(shù)上是“”函數(shù)。已知下列函數(shù):①;、;③();、,其中屬于“”函數(shù)的序號是           .(寫出所有滿足要求的函數(shù)的序號)

 

查看答案和解析>>

同步練習(xí)冊答案