(本小題共14分)
已知函數(shù),其中.
(Ⅰ)若b>2a,且的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(Ⅱ)若對(duì)任意實(shí)數(shù)x,不等式恒成立,且存在使得成立,求c的值.
f(x)的最小值為,c=1
由此可解得.………………………………………………………… 5分
b>2a, 且, ∴ ,從而c =-2.
.
f(x)的最小值為.………………………………………………… 7分
(Ⅱ) 令x =1,代入,即.
從而.           又由,得.
a > 0, 故.
. 從而.…………………… 10分
,∴ , .
, ∴ c =1或c =2.………………………………………… 12分
當(dāng)c =2時(shí),b=0, .此時(shí)不滿足.
c =2不符合題意,舍去.
所以c =1. ……………………………………………………………… 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)有下列性質(zhì):“若
,使得”成立。
(1)利用這個(gè)性質(zhì)證明唯一;
(2)設(shè)A、B、C是函數(shù)圖象上三個(gè)不同的點(diǎn),試判斷△ABC的形狀,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將函數(shù)y=3sin(x-θ)的圖象F按向量(,3)平移得到圖象F′,若F′的一條對(duì)稱軸是直線x=,則θ的一個(gè)可能取值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分7分,第2小題滿分7分.
已知二次函數(shù)對(duì)任意均有成立,且函數(shù)的圖像過(guò)點(diǎn)
(1)求函數(shù)的解析式;
(2)若不等式的解集為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,射線OAy=2x(x>0),射線OBy= –2x(x>0),動(dòng)點(diǎn)Px, y)在的內(nèi)部,N,四邊形ONPM的面積為2..
(I)動(dòng)點(diǎn)P的縱坐標(biāo)y是其橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(II)確定y=f(x)的定義域.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)討論的奇偶性;
(3)討論上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義在上的函數(shù)滿足,當(dāng)時(shí)單調(diào)遞增
,且,判斷的符號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公園舉辦雕塑展覽吸引著四方賓客.旅游人數(shù)與人均消費(fèi)(元)的關(guān)系如下:
(1)若游客客源充足,那么當(dāng)天接待游客多少人時(shí),公園的旅游收入最多?
(2)若公園每天運(yùn)營(yíng)成本為萬(wàn)元(不含工作人員的工資),還要上繳占旅游收入20%的稅收,其余自負(fù)盈虧.目前公園的工作人員維持在40人.要使工作人員平均每人每天的工資不低于100元,并維持每天正常運(yùn)營(yíng)(不負(fù)債),每天的游客人數(shù)應(yīng)控制在怎樣的合理范圍內(nèi)?
(注:旅游收入=旅游人數(shù)×人均消費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知方程的兩根為,若,求實(shí)數(shù)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案