【題目】已知函數(shù).

(1)若,上恒成立,求的取值范圍;

(2)設(shè)數(shù)列,為數(shù)列的前項(xiàng)和,求證:;

(3)當(dāng)時(shí),設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn),,過(guò)線段的中點(diǎn)軸的垂線分別交于點(diǎn),問(wèn)是否存在點(diǎn),使處的切線與處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)詳見(jiàn)解析;(3)不存在.

【解析】

(1)當(dāng)時(shí),,即,設(shè),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性與最值,即可求得求解;

(2)由(1)得上恒成立,令,則,即可作出證明;

(3),設(shè)點(diǎn)的坐標(biāo)是,,得到在點(diǎn)處的切線斜率為,在點(diǎn)處的切線斜率為,根據(jù),即,整理得,設(shè),得到函數(shù),,再令,,利用導(dǎo)數(shù)得到的單調(diào)性和最值,即可求解.

(1)當(dāng)時(shí),,即,

設(shè),則.

,顯然不滿(mǎn)足題意;

,則時(shí),恒成立,

所以上為減函數(shù),有上恒成立;

,則時(shí),時(shí),

所以上單調(diào)遞增.

,∴時(shí),,不滿(mǎn)足題意.

綜上,時(shí)上恒成立.

(2)由(1)得上恒成立,

,,

,

.

(3),設(shè)點(diǎn)的坐標(biāo)是,且,

則點(diǎn)的中點(diǎn)坐標(biāo)為,

在點(diǎn)處的切線斜率為

在點(diǎn)處的切線斜率為,

假設(shè)在點(diǎn)處的切線與在點(diǎn)處的切線平行,則,即.

所以

,

所以.

設(shè),則,.、

,,則.

因?yàn)?/span>,所以,所以上單調(diào)遞增.

,則.

這與①矛盾,假設(shè)不成立.

故不存在點(diǎn),使在點(diǎn)處的切線與在點(diǎn)處的切線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩錘子、剪刀、布的猜拳游戲,假設(shè)兩人都隨機(jī)出拳,求:

1)平局的概率;

2)甲贏的概率;

3)甲不輸?shù)母怕?/span>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省級(jí)示范高中高三年級(jí)對(duì)考試的評(píng)價(jià)指標(biāo)中,有難度系數(shù)”“區(qū)分度綜合三個(gè)指標(biāo),其中,難度系數(shù),區(qū)分度,綜合指標(biāo).以下是高三年級(jí) 6 次考試的統(tǒng)計(jì)數(shù)據(jù):

i

1

2

3

4

5

6

難度系數(shù) xi

0.66

0.72

0.73

0.77

0.78

0.84

區(qū)分度 yi

0.19

0.24

0.23

0.23

0.21

0.16

(I) 計(jì)算相關(guān)系數(shù),若,則認(rèn)為的相關(guān)性強(qiáng);通過(guò)計(jì)算相關(guān)系數(shù) ,能否認(rèn)為的相關(guān)性很強(qiáng)(結(jié)果保留兩位小數(shù))?

(II) 根據(jù)經(jīng)驗(yàn),當(dāng)時(shí),區(qū)分度與難度系數(shù)的相關(guān)性較強(qiáng),從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即

(i) 寫(xiě)出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));

(ii) 假設(shè)當(dāng)時(shí), 的關(guān)系依從(i)中的回歸方程,當(dāng) 為何值時(shí),綜合指標(biāo)的值最大?

參考數(shù)據(jù):

參考公式:

相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).

(1)寫(xiě)出直線BC的一個(gè)方向向量;

(2)設(shè)平面α經(jīng)過(guò)點(diǎn)A,且BCα的法向量,M(x,y,z)是平面α內(nèi)的任意一點(diǎn),試寫(xiě)出x,y,z滿(mǎn)足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了反映國(guó)民經(jīng)濟(jì)各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過(guò)聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉(cāng)儲(chǔ)指數(shù)最大值是在3月份

B. 2017年1月至12月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉(cāng)儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大

D. 2017年11月的倉(cāng)儲(chǔ)指數(shù)較上月有所回落,顯示出倉(cāng)儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,APAB=2,BC=2E,F分別是ADPC的中點(diǎn).

(1)證明:PC⊥平面BEF

(2)求平面BEF與平面BAP夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),

1)由圖中數(shù)據(jù)求a的值;

2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動(dòng),則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?

3)估計(jì)這所小學(xué)的小學(xué)生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是20個(gè)國(guó)家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.

國(guó)家和地區(qū)

排放總量/千噸

人均排放量/

國(guó)家和地區(qū)

排放總量/千噸

人均排放量/

A

10330000

7.4

K

480000

2.0

B

5300000

16.6

L

480000

7.5

C

3740000

7.3

M

470000

3.9

D

2070000

1.7

N

410000

5.3

E

1800000

12.6

O

390000

16.9

F

1360000

10.7

P

390000

6.4

G

840000

10.2

Q

370000

5.7

H

630000

12.7

R

330000

6.2

I

550000

15.7

S

320000

6.2

J

510000

2.6

T

490000

16.6

1)這20個(gè)國(guó)家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?

2)針對(duì)這20個(gè)國(guó)家和地區(qū),請(qǐng)你找出二氧化碳排放總量較少的前15%的國(guó)家和地區(qū).

查看答案和解析>>

同步練習(xí)冊(cè)答案