【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點(diǎn).

1)求證: 平面;

2)求二面角的余弦值的大小.

【答案】1)見解析(2

【解析】試題分析:(1)取AD的中點(diǎn)N,連接MN、NF.由三角形中位線定理,結(jié)合已知條件,證出四邊形MNFE為平行四邊形,從而得到EMFN,結(jié)合線面平行的判定定理,證出EM∥平面ADF;(2)求出平面ADF、平面BDF的一個法向量,利用向量的夾角公式,可求二面角的大小.

解析:

(1)解法一:取的中點(diǎn),連接.

中, 的中點(diǎn), 的中點(diǎn),

所以,又因為,

所以.

所以四邊形為平行四邊形,所以,

又因為平面平面,故平面.

解法二:因為平面

故以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.

由已知可得

設(shè)平面的一個法向量是.

,則.

又因為,所以,又平面

平面.

2)由(1)可知平面的一個法向量是.

易得平面的一個法向量是

所以,又二面角為銳角,

故二面角的余弦值大小為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 是等邊三角形, 的中點(diǎn),四邊形為直角梯形, .

1)求證:平面平面

2)求四棱錐的體積;

3)在棱上是否存在點(diǎn),使得平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù),且.

(1)判斷函數(shù)的單調(diào)性;

(2)若,討論函數(shù)零點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題“若,則”的逆否命題為“若,則

B. 若命題 ”,則命題的否定為“,

C. ”是“”的充分不必要條件

D. ”是“直線與直線互為垂直”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)坐標(biāo)是,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過作直線交橢圓于兩點(diǎn), 是橢圓的另一個焦點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù): , ;

回歸方程中斜率和截距的最小二乘法估計公式分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng),不等式恒成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時,求上的單調(diào)區(qū)間;

2, 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線 為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案