【題目】在直角坐標(biāo)系內(nèi),點(diǎn)A,B的坐標(biāo)分別為,P是坐標(biāo)平面內(nèi)的動點(diǎn),且直線的斜率之積等于.設(shè)點(diǎn)P的軌跡為C.

1)求軌跡C的方程;

2)某同學(xué)對軌跡C的性質(zhì)進(jìn)行探究后發(fā)現(xiàn):若過點(diǎn)且傾斜角不為0的直線與軌跡C相交于MN兩點(diǎn),則直線的交點(diǎn)Q在一條定直線上.此結(jié)論是否正確?若正確,請給予證明,并求出定直線方程;若不正確,請說明理由.

【答案】1;(2)正確,證明見解析,直線.

【解析】

1)設(shè)點(diǎn)P的坐標(biāo)為,利用直接法,列方程即可求解.

2)根據(jù)題意,可設(shè)直線的方程為:,將直線與橢圓方程聯(lián)立,整理可得,利用韋達(dá)定理可得,,直線的方程與直線的方程,直線,的交點(diǎn)的坐標(biāo)滿足:,整理可得,即證.

(1)設(shè)點(diǎn)P的坐標(biāo)為,

,得,即.

故軌跡C的方程為:

2)根據(jù)題意,可設(shè)直線的方程為:,

,消去x并整理得

其中,.

設(shè),,則,.

因直線的傾斜角不為0,故,不等于不為0),

從而可設(shè)直線的方程為①,

直線的方程為②,

所以,直線,的交點(diǎn)的坐標(biāo)滿足:

,

因此,,即點(diǎn)Q在直線.

所以,探究發(fā)現(xiàn)的結(jié)論是正確的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱臺ABCDEF中,平面ACFD⊥平面ABC,∠ACB=ACD=45°,DC =2BC

I)證明:EFDB

II)求DF與面DBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】發(fā)展“會員”、提供優(yōu)惠,成為不少實體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動.抽獎返現(xiàn)便是針對“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”不同級別的會員享受不同的優(yōu)惠的一項活動:“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”分別有4次、3次、2次、1次抽獎機(jī)會.抽獎機(jī)如圖:抽獎?wù)叩谝淮伟聪鲁楠勬I,在正四面體的頂點(diǎn)出現(xiàn)一個小球,再次按下抽獎鍵,小球以相等的可能移向鄰近的頂點(diǎn)之一,再次按下抽獎鍵,小球又以相等的可能移向鄰近的頂點(diǎn)之一……每一個頂點(diǎn)上均有一個發(fā)光器,小球在某點(diǎn)時,該點(diǎn)等可能發(fā)紅光或藍(lán)光,若出現(xiàn)紅光則獲得2個單位現(xiàn)金,若出現(xiàn)藍(lán)光則獲得3個單位現(xiàn)金.

1)求“銀卡會員”獲得獎金的分布列;

2表示第次按下抽獎鍵,小球出現(xiàn)在點(diǎn)處的概率.

,的值;

寫出關(guān)系式,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,為矩形,為等腰梯形,,,且,平面平面,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若直線與平面所成的角的正弦值為,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,且,.

(1)證明:平面平面;

(2)有一動點(diǎn)在底面的四條邊上移動,求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知鮮切花的質(zhì)量等級按照花枝長度進(jìn)行劃分,劃分標(biāo)準(zhǔn)如下表所示.

花枝長度

鮮花等級

三級

二級

一級

某鮮切花加工企業(yè)分別從甲乙兩個種植基地購進(jìn)鮮切花,現(xiàn)從兩個種植基地購進(jìn)的鮮切花中分別隨機(jī)抽取30個樣品,測量花枝長度并進(jìn)行等級評定,所抽取樣品數(shù)據(jù)如圖所示.

1)根據(jù)莖葉圖比較兩個種植基地鮮切花的花枝長度的平均值及分散程度(不要求計算具體值,給出結(jié)論即可);

2)若從等級為三級的樣品中隨機(jī)選取2個進(jìn)行新產(chǎn)品試加工,求選取的2個全部來自乙種植基地的概率;

3)根據(jù)該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產(chǎn)品的單件利潤為4元;來自乙種植基地的鮮切花的加工產(chǎn)品的單件成本為10元,銷售率(某等級產(chǎn)品的銷量與產(chǎn)量的比值)及單價如下表所示.

三級花加工產(chǎn)品

二級花加工產(chǎn)品

一級花加工產(chǎn)品

銷售率

單價/(元/件)

12

16

20

由于鮮切花加工產(chǎn)品的保鮮特點(diǎn),未售出的產(chǎn)品均可按原售價的50%處理完畢.用樣本估計總體,如果僅從單件產(chǎn)品的利潤的角度考慮,該鮮切花加工企業(yè)應(yīng)該從哪個種植基地購進(jìn)鮮切花?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列滿足,,記數(shù)列的前n項和是,則(

A.若數(shù)列是常數(shù)列,則

B.,則數(shù)列單調(diào)遞減

C.,則

D.,任取中的9構(gòu)成數(shù)列的子數(shù)列,則不全是單調(diào)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肺炎(簡稱新冠肺炎)成為威脅全球的公共衛(wèi)生問題,中醫(yī)藥在本次新冠肺炎的治療中發(fā)揮了重要作用.研究人員對66例普通型新冠肺炎恢復(fù)期患者進(jìn)行了中醫(yī)臨床特征分析,發(fā)現(xiàn)主要證型有氣陰兩虛證與肺脾氣虛證,同時可能兼夾濕證.為研究這兩種主要證型在兼夾濕證的難易上是否有差異,研究人員將濕證癥狀分級量化,將所有肺脾氣虛證患者的量化分作成莖葉圖.

1)若量化分不低于16分,即可診斷為兼夾濕證,請參考莖葉圖,完成下面列聯(lián)表.

夾濕證

非夾濕證

合計

氣陰兩虛

20

肺脾氣虛

合計

66

2)根據(jù)此資料,能否有99%的把握認(rèn)為兩種主要證型在兼夾濕證的難易上有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案