【題目】已知橢圓的焦距和短軸長度相等,且過點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)圓與橢圓C分別交y軸正半軸于點(diǎn)A,B,過點(diǎn)(,且)且與x軸垂直的直線l分別交圓O與橢圓C于點(diǎn)M,N(均位于x軸上方),問直線AM,BN的交點(diǎn)是否在一條定直線上,請說明理由.
【答案】(Ⅰ);(Ⅱ)兩直線交點(diǎn)一定在x軸上,理由詳見解析.
【解析】
(Ⅰ)根據(jù)題意列出關(guān)于的方程,解方程組求出,即可得橢圓方程;
(Ⅱ)設(shè),由,,可推出,然后利用兩點(diǎn)坐標(biāo)寫出直線的直線方程,聯(lián)立直線方程即可求出交點(diǎn)的縱坐標(biāo),從而得出直線AM,BN的交點(diǎn)一定在x軸上.
(Ⅰ)由題意可得:,
解得:,,
∴橢圓C的方程為;
(Ⅱ)由題可知,設(shè)
因?yàn)?/span>在橢圓上,在圓上,
所以,,
所以,
直線,
直線,
設(shè)兩直線的交點(diǎn)坐標(biāo)為,則,解得,
故直線AM,BN的交點(diǎn)一定在x軸上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,因新冠肺炎疫情防控工作需要,、兩社區(qū)需要招募義務(wù)宣傳員,現(xiàn)有、、、、、六位大學(xué)生和甲、乙、丙三位黨員教師志愿參加,現(xiàn)將他們分成兩個(gè)小組分別派往、兩社區(qū)開展疫情防控宣傳工作,要求每個(gè)社區(qū)都至少安排1位黨員教師及3位大學(xué)生,且由于工作原因只能派往社區(qū),則不同的選派方案種數(shù)為( )
A.60B.90
C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左右頂點(diǎn)分別是,離心率為,設(shè)點(diǎn),連接交橢圓于點(diǎn),坐標(biāo)原點(diǎn)是.
(1)證明: ;
(2)設(shè)三角形的面積為,四邊形的面積為, 若 的最小值為1,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sinωx(ω>0)的圖象與其對稱軸在y軸右側(cè)的交點(diǎn)從左到右依次記為A1,A2,A3,…,An,…,在點(diǎn)列{An}中存在三個(gè)不同的點(diǎn)Ak、Al、Ap,使得△AkAlAp是等腰直角三角形,將滿足上述條件的ω值從小到大組成的數(shù)記為ωn,則ω6=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,汽車從甲地勻速行駛到乙地,速度不超過100千米/小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成,可變部分與速度(千米/小時(shí))的平方成正比,比例系數(shù)為(),固定部分為1000元.
(1)把全程運(yùn)輸成本(元)表示為速度(千米/小時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對任意,不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①是與的等差中項(xiàng);②是與的等比中項(xiàng);③數(shù)列的前5項(xiàng)和為65這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線中,并解答下面的問題.
已知是公差為2的等差數(shù)列,其前項(xiàng)和為,________________________.
(1)求;
(2)設(shè),是否存在,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,,若棱,,兩兩垂直,長度分別為1,2,2,且向量與夾角的余弦值為.
(1)求的長度;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)把曲線和直線化為直角坐標(biāo)方程;
(2)過原點(diǎn)引一條射線分別交曲線和直線于,兩點(diǎn),射線上另有一點(diǎn)滿足,求點(diǎn)的軌跡方程(寫成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com