【題目】已知雙曲線的左、右焦點(diǎn)分別為F1、F2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過F2作直線PQ的垂線,垂足為B. 則 |OA|+2|OB|=_____
【答案】3
【解析】
利用切線長定理,結(jié)合雙曲線的定義,把|PF1|﹣|PF2|=2a,轉(zhuǎn)化為|AF1|﹣|AF2|=2a,從而求得點(diǎn)A的橫坐標(biāo)即得到|OA|,在△F1CF2中,利用中位線定理得出|OB|,從而得到答案.
根據(jù)題意得F1(﹣c,0),F(xiàn)2(c,0),設(shè)△PF1F2的內(nèi)切圓分別與PF1,PF2切于點(diǎn)A1,B1,與F1F2切于點(diǎn)A,則|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又點(diǎn)P在雙曲線右支上,∴|PF1|﹣|PF2|=2a,∴|F1A|﹣|F2A|=2a,而|F1A|+|F2A|=2c,設(shè)A點(diǎn)坐標(biāo)為(x,0),則由|F1A|﹣|F2A|=2a,得(x+c)﹣(c﹣x)=2a,解得x=a,
∴|OA|=a,∴在△F1CF2中,OB=CF1=(PF1﹣PC)=(PF1﹣PF2)==a,
∴|OA|與|OB|的長度均為a,由雙曲線方程可知,a=1,
∴|OA|+2|OB|=3a=3.
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某觀測站在目標(biāo)的南偏西方向,從出發(fā)有一條南偏東走向的公路,在處測得與相距的公路處有一個人正沿著此公路向走去,走到達(dá),此時測得距離為,若此人必須在分鐘內(nèi)從處到達(dá)處,則此人的最小速度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域為R的奇函數(shù),當(dāng)x<0時,.
(1)求f(2)的值;
(2)用定義法判斷y=f(x)在區(qū)間(-∞,0)上的單調(diào)性.
(3)求的解析式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綿陽是黨中央、國務(wù)院批準(zhǔn)建設(shè)的中國唯一的科技城,重要的國防科研和電子工業(yè)生產(chǎn)基地,市某科研單位在研發(fā)過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值(值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時,是的二次函數(shù);當(dāng)時,測得部分?jǐn)?shù)據(jù)如表:
(單位:克) | |||||
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)求該新合金材料的含量為何值時產(chǎn)品的性能達(dá)到最佳.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 曲線的參數(shù)方程為為參數(shù)) ;在以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線,的交點(diǎn)分別為 (異于原點(diǎn)). 當(dāng)斜率時, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,,.
(1)當(dāng)時,求的大小;
(2)求的面積S的最小值及使得S取最小值時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com