(200個(gè)•陜西)已知橢圓C:
x2
個(gè)2
+
y2
b2
=1
(個(gè)>b>0)的離心率為
3
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于個(gè)、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為
3
2
,求△個(gè)OB面積的最大值.
(Ⅰ)設(shè)橢圓的半焦距為c,依題意
c
a
=
6
3
a=
3
∴b=1,∴所求橢圓方程為
x
3
+y=1

(Ⅱ)設(shè)A(x1,y1),B(x,y).
(1)當(dāng)AB⊥x軸時(shí),|AB|=
3

(上)當(dāng)AB與x軸不垂直時(shí),設(shè)直線(xiàn)AB的方程為y=kx+m.
由已知
|m|
1+k
=
3
,得m=
3
r
(k+1)

把y=kx+m代入橢圓方程,整理得(3k+1)x+6kmx+3m-3=0,
x1+x=
-6km
3k+1
,x1x=
3(m-1)
3k+1

∴|AB|=(1+k)(x-x1
=(1+k)[
36km
(3k+1)
-
1上(m-1)
3k+1
]

=
1上(k+1)(3k+1-m)
(3k+1)

=
3(k+1)(9k+1)
(3k+1)

=3+
1上k
9kr+6k+1

=3+
1上
9k+
1
k
+6
(k≠0)≤3+
1上
上×3+6
=r

當(dāng)且僅當(dāng)9k=
1
k
,即k=±
3
3
時(shí)等號(hào)成立.當(dāng)k=0時(shí),|AB|=
3
,
綜上所述|AB|max=上.∴當(dāng)|AB|最大時(shí),△AOB面積取最大值S=
1
×|AB|max×
3
=
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)(1,
q
2
)
,且離心率e=
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)若直線(xiàn)l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N,且線(xiàn)段MN的垂直平分線(xiàn)過(guò)定點(diǎn)G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)l過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),且交拋物線(xiàn)于A,B兩點(diǎn),交其準(zhǔn)線(xiàn)于C點(diǎn),已知|AF|=4,
CB
=3
BF
,則p=( 。
A.2B.
4
3
C.
8
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線(xiàn)AP與BP的斜率之積為-
1
2
,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線(xiàn)OP的斜率k滿(mǎn)足|k|>
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,其左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
7
2
,
PF1
PF2
=
3
4
(O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)若過(guò)F1的直線(xiàn)L與該橢圓相交于M、N兩點(diǎn),且|
F1M
|=2|
F1N
|
,求直線(xiàn)L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知
1
m
+
2
n
=1(m>0,n>0)
,當(dāng)mn取得最小值時(shí),直線(xiàn)y=-
2
x+2
與曲線(xiàn)
x|x|
m
+
y|y|
n
=1
交點(diǎn)個(gè)數(shù)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(0,1)、B(0,-1),P是一個(gè)動(dòng)點(diǎn),且直線(xiàn)PA、PB的斜率之積為-
1
2

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)Q(2,0),過(guò)點(diǎn)(-1,0)的直線(xiàn)l交C于M、N兩點(diǎn),若對(duì)滿(mǎn)足條件的任意直線(xiàn)l,不等式
QM
QN
≤λ
恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩定點(diǎn)E(-
2
,0),F(xiàn)(
2
,0)
,動(dòng)點(diǎn)P滿(mǎn)足
PE
PF
=0
,由點(diǎn)P向x軸作垂線(xiàn)PQ,垂足為Q,點(diǎn)M滿(mǎn)足
PM
=(
2
-1)
MQ
,點(diǎn)M的軌跡為C.
(I)求曲線(xiàn)C的方程;
(II)若線(xiàn)段AB是曲線(xiàn)C的一條動(dòng)弦,且|AB|=2,求坐標(biāo)原點(diǎn)O到動(dòng)弦AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,矩形ABCD中,E是BC上的點(diǎn),AE⊥DE,BE=4,EC=1,則AB的長(zhǎng)為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案