【題目】正方形和四邊形所在的平面互相垂直,,.

求證:(1) 平面;

(2) 平面.

【答案】詳見解析

【解析】

(1)由題意利用線面平行的判定定理證明題中的結(jié)論即可;

(2)由題意結(jié)合線面垂直的判定定理證明題中的結(jié)論即可.

(1)如圖設(shè)ACBD交于點G

因為EFAG,且EF1,

AGAC1

所以四邊形AGEF為平行四邊形.

所以AFEG

因為EG平面BDE,AF平面BDE

所以AF∥平面BDE

(2)連接FG,

EFCGEFCG1,

∴四邊形CEFG為平行四邊形,

又∵CEEF1,∴CEFG為菱形,

EGCF

在正方形ABCD中,ACBD

∵正方形ABCD和四邊形ACEF所在的平面互相垂直,

BD⊥平面CEFG.∴BDCF

又∵EGBDG,∴CF⊥平面BDE

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,,動點P滿足

若點P為曲線C,求此曲線的方程;

已知直線l在兩坐標軸上的截距相等,且與中的曲線C只有一個公共點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).

比分

易建聯(lián)技術(shù)統(tǒng)計

投籃命中

罰球命中

全場得分

真實得分率

中國91﹣42新加坡

3/7

6/7

12

59.52%

中國76﹣73韓國

7/13

6/8

20

60.53%

中國84﹣67約旦

12/20

2/5

26

58.56%

中國75﹣62哈薩克期坦

5/7

5/5

15

81.52%

中國90﹣72黎巴嫩

7/11

5/5

19

71.97%

中國85﹣69卡塔爾

4/10

4/4

13

55.27%

中國104﹣58印度

8/12

5/5

21

73.94%

中國70﹣57伊朗

5/10

2/4

13

55.27%

中國78﹣67菲律賓

4/14

3/6

11

33.05%

注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實得分率)是衡量球員進攻的效率,其計算公式為:
TS%=.全場得分/2x(投籃出手次數(shù)+0.44x罰球出手次數(shù))
(Ⅰ)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中TS%超過50%的概率;
(Ⅱ)從上述9場比賽中隨機選擇兩場,求易建聯(lián)在這兩場比賽中TS%至少有一場超過60%的概率;
(Ⅲ)用x來表示易建聯(lián)某場的得分,用y來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= , g(x)=ex+m , 其中e=2.718….
(1)求f(x)在x=1處的切線方程;
(2)當m≥﹣2時,證明:f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是( 。
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ax2﹣3ax+1的圖象經(jīng)過四個象限,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游景點預計2013年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關(guān)系近似地滿足p(x)=x(x+1)(39﹣2x),(x∈N* , 且x≤12).已知第x月的人均消費額q(x)(單位:元)與x的近似關(guān)系是q(x)=
(I)寫出2013年第x月的旅游人數(shù)f(x)(單位:萬人)與x的函數(shù)關(guān)系式;
(II)試問2013年第幾月旅游消費總額最大,最大月旅游消費總額為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示四棱錐中,底面,四邊形中,,,,

求四棱錐的體積;

求證:平面;

在棱上是否存在點異于點,使得平面,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某二手車交易市場對某型號的二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價

16

13

9.5

7

4.5

(1)試求關(guān)于的回歸直線方程:(參考公式:, .)

(2)已知每輛該型號汽車的收購價格為萬元,根據(jù)(1)中所求的回歸方程,預測為何值時,銷售一輛該型號汽車所獲得的利潤最大?

查看答案和解析>>

同步練習冊答案