【題目】已知橫梁的強(qiáng)度和它的矩形橫斷面的長(zhǎng)的平方與寬的乘積成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的長(zhǎng)和寬分別為 ( )

A. d, d B. d, d

C. d, d D. d, d

【答案】C

【解析】

根據(jù)橫梁的強(qiáng)度和它的矩形橫斷面的長(zhǎng)的平方與寬的乘積成正比,建立關(guān)系.由勾股定理可得x2+y2=d2,利用導(dǎo)函數(shù)的性質(zhì)求出最值.

由題意,設(shè)橫梁的強(qiáng)度為T(mén),則T=xy2.(x>0,y>0)

由勾股定理可得x2+y2=d2,

可得:T=x(d2﹣x2)=xd2﹣x3

則T′=d2﹣3x2

令T′=0.

可得:x=(舍去).

當(dāng)時(shí),可得T′0,則T是單調(diào)遞增函數(shù).

當(dāng)時(shí),可得T′0,則T是單調(diào)遞減函數(shù).

∴x=時(shí),T取得最大值,此時(shí)y==

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四種說(shuō)法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對(duì)于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是
說(shuō)法錯(cuò)誤的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖4所示,其中成績(jī)分組區(qū)間是: ,.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).

分?jǐn)?shù)段

X:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若分別是橢圓的左、右焦點(diǎn),過(guò)的直線(xiàn)與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌豆腐食品是經(jīng)過(guò)A,B,C三道工序加工而成的,A,B,C工序的產(chǎn)品合格率分別為,,.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都合格時(shí)產(chǎn)品為一等品;恰有兩次合格為二等品;其他的為廢品,不進(jìn)入市場(chǎng).

(1)生產(chǎn)一袋豆腐食品,求產(chǎn)品為廢品的概率;

(2)生產(chǎn)一袋豆腐食品,設(shè)X為三道加工工序中產(chǎn)品合格的工序數(shù),X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某制瓶廠(chǎng)要制造一批軸截面如圖所示的瓶子,瓶子是按照統(tǒng)一規(guī)格設(shè)計(jì)的,瓶體上部為半球體,下部為圓柱體,并保持圓柱體的容積為.設(shè)圓柱體的底面半徑為x,圓柱體的高為h,瓶體的表面積為S.

(1)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式;

(2)如何設(shè)計(jì)瓶子的尺寸(不考慮瓶壁的厚度),可以使表面積S最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),已知P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(1+cosωx,1), =(1,a+ sinωx)(ω為常數(shù)且ω>0),函數(shù)f(x)= 在R上的最大值為2.
(1)求實(shí)數(shù)a的值;
(2)把函數(shù)y=f(x)的圖象向右平移 個(gè)單位,可得函數(shù)y=g(x)的圖象,若y=g(x)在[0, ]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長(zhǎng)線(xiàn)相交于點(diǎn)E,EF∥DA,并與CB的延長(zhǎng)線(xiàn)交于點(diǎn)F,F(xiàn)G切⊙O于G.

(1)求證:BEEF=CEBF;
(2)求證:FE=FG.

查看答案和解析>>

同步練習(xí)冊(cè)答案