【題目】選修4-4:坐標系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的直角坐標方程,并求的焦點的直角坐標;

(2)已知點,若直線相交于兩點,且,求的面積.

【答案】(1)的直角坐標方程為,其焦點為.(2)

【解析】試題分析:1根據(jù)代入原方程,寫出直角坐標方程以及焦點坐標即可; 2將直線l的參數(shù)方程代入曲線C中,寫出韋達定理,再根據(jù)t的幾何意義將等價轉(zhuǎn)化,代入韋達定理解出直線的傾斜角的值,進而求出三角形的面積.

試題解析:解:(1)原方程變形為,

,

的直角坐標方程為,其焦點為.

(2)把的方程代入,

,

,

平方得,

把①代入②得,

是直線的傾斜角,∴

的普通方程為,且

的面積為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在平面直角坐標系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,A,B兩點的極坐標分別為.

()求圓C的普通方程和直線的直角坐標方程;

()P是圓C上任一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當時,試探究函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當直線l的傾斜角為45°時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:

印刷冊數(shù)(千冊)

2

3

4

5

8

單冊成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計算結(jié)果精確到0.1);

印刷冊數(shù)(千冊)

2

3

4

5

8

單冊成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調(diào)查,新需求量為8千冊(概率0.8)或10千冊(概率0.2),若印刷廠以每冊5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組中的兩個函數(shù)是同一函數(shù)的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題,其中為真命題的是( ) ① ;② ;
;④
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點P是橢圓 上的一點,F(xiàn)1和F2是焦點,且 ,則△F1PF2的周長為 , △F1PF2的面積為

查看答案和解析>>

同步練習冊答案