【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),證明.
【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析.
【解析】試題分析:(Ⅰ)易求得函數(shù)的定義域?yàn)?/span>,由函數(shù),則,令或,即可求得函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí), ,要證,只需證,所以此問就是求函數(shù)在定義域區(qū)間的最小值.
試題解析: (Ⅰ)易求得函數(shù)的定義域?yàn)?/span>,
已知函數(shù),
所以,
令,即
當(dāng)時(shí), 恒成立,所以函數(shù)的單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間。
當(dāng)時(shí),不等式的解為或
又因?yàn)?/span>,
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為
當(dāng)時(shí),不等式的解為或
又因?yàn)?/span>,
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間。
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為
(Ⅱ)當(dāng)時(shí),
所以
已知
令,得
所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為
所以
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)教育部最新消息,2020年高考數(shù)學(xué)將是最后一年實(shí)行文理分科,由于課程大綱與命題方向出現(xiàn)了變動,試題難度也可能會做出相應(yīng)調(diào)整.為了評估學(xué)生在2020年高考復(fù)習(xí)情況,某中學(xué)組織本校540名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理科考生中分別抽取60和30份數(shù)學(xué)試卷進(jìn)行成績分析,得到下面的成績頻數(shù)分布表:
分?jǐn)?shù)分組 | |||||
文科頻數(shù) | 12 | 4 | 10 | 11 | 23 |
理科頻數(shù) | 3 | 7 | 2 | 10 | 8 |
由此可估計(jì)文科考生的不及格人數(shù)(90分為及格分?jǐn)?shù)線)大約為( )
A.128B.156C.204D.132
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;
②騎自行車者是變速運(yùn)動,騎摩托車者是勻速運(yùn)動;
③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;
④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.
其中,正確信息的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點(diǎn),.
(1)證明:平面;
(2)設(shè)點(diǎn)是線段的中點(diǎn),求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銀行對某市最近5年住房貸款發(fā)放情況(按每年6月份與前一年6月份為1年統(tǒng)計(jì))作了統(tǒng)計(jì)調(diào)查,得到如下數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
貸款(億元) | 50 | 60 | 70 | 80 | 100 |
(1)將上表進(jìn)行如下處理:,
得到數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0 | 1 | 2 | 3 | 5 |
試求與的線性回歸方程,再寫出與的線性回歸方程.
(2)利用(1)中所求的線性回歸方程估算2019年房貸發(fā)放數(shù)額.
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com