過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.

 

【答案】

(1)見解析       (2)見解析

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年咸陽市二模) 過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(1)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(2)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線的對(duì)稱軸上一點(diǎn)的直線與拋物線相交于M、N兩點(diǎn),自M、N向直線作垂線,垂足分別為、。

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)記 、的面積分別為、、,是否存在,使得對(duì)任意的,都有成立。若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省舟山市09-10學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)理 題型:解答題

過拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn)

(1)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(2)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年大連市高三高考?jí)狠S考試?yán)砜茢?shù)學(xué)卷 題型:解答題

過拋物線的對(duì)稱軸上一點(diǎn)的直線與拋物線相交于M、N兩點(diǎn),自M、N向直線作垂線,垂足分別為、。  

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)記、 、的面積分別為、,是否存在,使得對(duì)任意的,都有成立。若存在,求值;若不在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案