【題目】已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程.
【答案】(1)證明見(jiàn)解析(2)圓C的方程為(x-2)2+(y-1)2=5
【解析】
(1)先求出圓C的方程(x-t)2+=t2+,再求出|OA|,|0B|的長(zhǎng),即得△OAB的面積為定值;(2)根據(jù)t得到t=2或t=-2,再對(duì)t分類(lèi)討論得到圓C的方程.
(1)證明:因?yàn)閳AC過(guò)原點(diǎn)O,所以OC2=t2+.
設(shè)圓C的方程是(x-t)2+=t2+,
令x=0,得y1=0,y2=;
令y=0,得x1=0,x2=2t,
所以S△OAB=OA·OB=×|2t|×||=4,
即△OAB的面積為定值.
(2)因?yàn)?/span>OM=ON,CM=CN,所以OC垂直平分線段MN.
因?yàn)?/span>kMN=-2,所以kOC=.
所以t,解得t=2或t=-2.
當(dāng)t=2時(shí),圓心C的坐標(biāo)為(2,1),OC=,
此時(shí),圓心C到直線y=-2x+4的距離d=<,圓C與直線y=-2x+4相交于兩點(diǎn).
符合題意,此時(shí),圓的方程為(x-2)2+(y-1)2=5.
當(dāng)t=-2時(shí),圓心C的坐標(biāo)為(-2,-1),OC=,此時(shí)C到直線y=-2x+4的距離d=.圓C與直線y=-2x+4不相交,
所以t=-2不符合題意,舍去.
所以圓C的方程為(x-2)2+(y-1)2=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是首項(xiàng)的等差數(shù)列,設(shè).
(1)求證:是等比數(shù)列;
(2)記,求數(shù)列的前項(xiàng)和;
(3)在(2)的條件下,記,若對(duì)任意正整數(shù),不等式恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為梯形,,.是的中點(diǎn),底面,在平面上的正投影為點(diǎn),延長(zhǎng)交于點(diǎn).
(1)求證:為中點(diǎn);
(2)若,,在棱上確定一點(diǎn),使得平面,并求出與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)因綠色、環(huán)保、健康的出行方式,在國(guó)內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車(chē)出行”,其他人表示“較少或不選擇騎共享單車(chē)出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車(chē)出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車(chē)出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類(lèi),其中A類(lèi)服務(wù)員12名,B類(lèi)服務(wù)員名
(1)若采用分層抽樣的方法隨機(jī)抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類(lèi)服務(wù)員的人數(shù)是16, 求的值
(2)某客戶來(lái)公司聘請(qǐng)2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類(lèi)家政服務(wù)員和2名B類(lèi)家政服務(wù)員可供選擇
①請(qǐng)列出該客戶的所有可能選擇的情況
②求該客戶最終聘請(qǐng)的家政服務(wù)員中既有A類(lèi)又有B類(lèi)的概率來(lái)源:學(xué)|科|網(wǎng)]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過(guò)點(diǎn).
⑴求橢圓的方程;
⑵若在橢圓上有相異的兩點(diǎn)(三點(diǎn)不共線),為坐標(biāo)原點(diǎn),且直線,直線,直線的斜率滿足.
(。┣笞C: 是定值;
(ⅱ)設(shè)的面積為,當(dāng)取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點(diǎn)A處的切線與軸平行.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若存在不相等的實(shí)數(shù)使成立,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點(diǎn),求線段AB的中點(diǎn)P到坐標(biāo)原點(diǎn)O的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com